Skip to main content
Top
Published in: Physics of Metals and Metallography 8/2018

01-08-2018 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Positron Annihilation Spectroscopy of the Accumulation of Vacancy Defects in an Aging Fe–Ni–Al Alloy Irradiated at 573 K

Authors: D. A. Perminov, A. P. Druzhkov, V. L. Arbuzov

Published in: Physics of Metals and Metallography | Issue 8/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The influence of intermetallic Ni3Al precipitates on the accumulation of vacancy defects in aged Fe–Ni–Al alloy at the initial stages of electron irradiation (5 × 10–4 dpa) at a temperature of 573 K has been studied using positron annihilation spectroscopy. The obtained results demonstrate that intermetallic precipitates inhibit the process of the accumulation of vacancy defects under irradiation. It has been found that these precipitates facilitate the mutual recombination of point defects that form under irradiation. This effect has been attributed to elastic stresses at the precipitate–matrix boundaries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. J. Zinkle and J. T. Busby, “Structural materials for fission & fusion energy,” Mater. Today. 12, 12–19 (2009).CrossRef S. J. Zinkle and J. T. Busby, “Structural materials for fission & fusion energy,” Mater. Today. 12, 12–19 (2009).CrossRef
2.
go back to reference S. J. Zinkle and G. S. Was, “Materials challenges in nuclear energy,” Acta Mater. 61, 735–758 (2013).CrossRef S. J. Zinkle and G. S. Was, “Materials challenges in nuclear energy,” Acta Mater. 61, 735–758 (2013).CrossRef
3.
go back to reference V. F. Zelenskii, I. M. Neklyudov, and T. P. Chernyaeva, Radiation defects and swelling of metals (Naukova dumka, Kiev, 1988) [in Russian]. V. F. Zelenskii, I. M. Neklyudov, and T. P. Chernyaeva, Radiation defects and swelling of metals (Naukova dumka, Kiev, 1988) [in Russian].
4.
go back to reference J. F. Bates and R. W. Powell, “Irradiation-induced swelling in commercial alloys,” J. Nucl. Mater. 102, 200–213 (1981).CrossRef J. F. Bates and R. W. Powell, “Irradiation-induced swelling in commercial alloys,” J. Nucl. Mater. 102, 200–213 (1981).CrossRef
5.
go back to reference R. Bullough, B. L. Eyre, and G. L. Kulcinski, “A systematic approach to the radiation damage problem,” J. Nucl. Mater. 68, 168–178 (1977).CrossRef R. Bullough, B. L. Eyre, and G. L. Kulcinski, “A systematic approach to the radiation damage problem,” J. Nucl. Mater. 68, 168–178 (1977).CrossRef
6.
go back to reference V. V. Sagaradze and S. S. Lapin, “Unconventional approaches to the suppression of irradiation-induced swelling of stainless steels,” Phys. Met. Metallogr. 83, 417 (1997). V. V. Sagaradze and S. S. Lapin, “Unconventional approaches to the suppression of irradiation-induced swelling of stainless steels,” Phys. Met. Metallogr. 83, 417 (1997).
7.
go back to reference V. V. Sagaradze, B. N. Goshchitskii, V. L. Arbuzov, and Yu. N. Zuev, “Precipitation-hardening austenite steel for fast neutron reactors,” Metalloved. Term. Obrab. Met. No. 8, 13–20 (2003). V. V. Sagaradze, B. N. Goshchitskii, V. L. Arbuzov, and Yu. N. Zuev, “Precipitation-hardening austenite steel for fast neutron reactors,” Metalloved. Term. Obrab. Met. No. 8, 13–20 (2003).
8.
go back to reference G. R. Odette, M. J. Alinger, and B. D. Wirth, “Recent developments in irradiation resistant steels,” Annu. Rev. Mater. Res. 38, 471–503 (2008).CrossRef G. R. Odette, M. J. Alinger, and B. D. Wirth, “Recent developments in irradiation resistant steels,” Annu. Rev. Mater. Res. 38, 471–503 (2008).CrossRef
9.
go back to reference V. I. Grafutin and E. P. Prokop’ev, “Positron annihilation spectroscopyin materials structure studies,” Phys.–Usp. 45, 59–74 (2002).CrossRef V. I. Grafutin and E. P. Prokop’ev, “Positron annihilation spectroscopyin materials structure studies,” Phys.–Usp. 45, 59–74 (2002).CrossRef
10.
go back to reference A. P. Druzhkov, D. A. Perminov, V. L. Arbuzov, N. N. Stepanova, N. L. Pechorkina, “Positron confinement in intermetallic nanoparticles embedded in Fe–Ni–Al material,” J. Phys.: Condens. Matter. 16, 6395–6404 (2004). A. P. Druzhkov, D. A. Perminov, V. L. Arbuzov, N. N. Stepanova, N. L. Pechorkina, “Positron confinement in intermetallic nanoparticles embedded in Fe–Ni–Al material,” J. Phys.: Condens. Matter. 16, 6395–6404 (2004).
11.
go back to reference D. A. Perminov, A. P. Druzhkov, and V. L. Arbuzov, “Positron-annihilation studies of the influence of nanodimensional intermetallic precipitates on the evolution of radiation defects in the Fe–Ni–Al alloy,” Phys. Met. Metallogr. 116, 1151–1158 (2015).CrossRef D. A. Perminov, A. P. Druzhkov, and V. L. Arbuzov, “Positron-annihilation studies of the influence of nanodimensional intermetallic precipitates on the evolution of radiation defects in the Fe–Ni–Al alloy,” Phys. Met. Metallogr. 116, 1151–1158 (2015).CrossRef
12.
go back to reference A. P. Druzhkov, D. A. Perminov, and V. L. Arbuzov, “Effects of intermetallic nanoparticles on the evolution of vacancy defects in electron irradiated Fe–Ni–Al material,” J. Phys.: Condens. Matter. 18, 365–377 (2006). A. P. Druzhkov, D. A. Perminov, and V. L. Arbuzov, “Effects of intermetallic nanoparticles on the evolution of vacancy defects in electron irradiated Fe–Ni–Al material,” J. Phys.: Condens. Matter. 18, 365–377 (2006).
13.
go back to reference A. P. Druzhkov, D. A. Perminov, and N. L. Pecherkina, “Positron annihilation spectroscopy characterization of effect of intermetallic nanoparticles on accumulation and annealing of vacancy defects in electron-irradiated Fe–Ni–Al alloy,” Philos. Mag. 88, 959–976 (2008).CrossRef A. P. Druzhkov, D. A. Perminov, and N. L. Pecherkina, “Positron annihilation spectroscopy characterization of effect of intermetallic nanoparticles on accumulation and annealing of vacancy defects in electron-irradiated Fe–Ni–Al alloy,” Philos. Mag. 88, 959–976 (2008).CrossRef
14.
go back to reference D. A. Perminov, A. P. Druzhkov, and V. L. Arbuzov, “Role of intermetallic nanoparticles in radiation damage of austenitic Fe–Ni-based alloys studied by positron annihilation,” J. Nucl. Mater. 414, 186–193 (2011).CrossRef D. A. Perminov, A. P. Druzhkov, and V. L. Arbuzov, “Role of intermetallic nanoparticles in radiation damage of austenitic Fe–Ni-based alloys studied by positron annihilation,” J. Nucl. Mater. 414, 186–193 (2011).CrossRef
15.
go back to reference J. Morillo, C. H. de Novion, and J. Dural, “Neutron and electron radiation defects in titanium and tantalum monocarbides: An electrical resistivity study,” Radiat. Eff. 55, 67–78 (1981).CrossRef J. Morillo, C. H. de Novion, and J. Dural, “Neutron and electron radiation defects in titanium and tantalum monocarbides: An electrical resistivity study,” Radiat. Eff. 55, 67–78 (1981).CrossRef
16.
go back to reference M. Eldrup and B. N. Singh, “Studies of defects and defect agglomerates by positron annihilation spectroscopy,” J. Nucl. Mater. 251, 132–138 (1997).CrossRef M. Eldrup and B. N. Singh, “Studies of defects and defect agglomerates by positron annihilation spectroscopy,” J. Nucl. Mater. 251, 132–138 (1997).CrossRef
17.
go back to reference A. P. Druzhkov, S. E. Danilov, D. A. Perminov, and V. L. Arbuzov, “Formation and evolution of intermetallic nanoparticles and vacancy defects under irradiation in Fe–Ni–Al ageing alloy characterized by resistivity measurements and positron annihilation,” J. Nucl. Mater. 476, 168–178 (2016).CrossRef A. P. Druzhkov, S. E. Danilov, D. A. Perminov, and V. L. Arbuzov, “Formation and evolution of intermetallic nanoparticles and vacancy defects under irradiation in Fe–Ni–Al ageing alloy characterized by resistivity measurements and positron annihilation,” J. Nucl. Mater. 476, 168–178 (2016).CrossRef
18.
go back to reference L. C. Smedckjaer and M. J. Fluss, “Experimental methods of positron annihilation for the study of defects in metals,” Methods Exp. Phys. 21, 77–145 (1983).CrossRef L. C. Smedckjaer and M. J. Fluss, “Experimental methods of positron annihilation for the study of defects in metals,” Methods Exp. Phys. 21, 77–145 (1983).CrossRef
19.
go back to reference M. A. van Huis, A. van Veen, H. Schut, C. V. Falub, S. V. H. Eijt, P. E. Mijnarends, and J. Kuriplach, “Positron confinement in embedded lithium nanoclusters,” Phys. Rev. B. 65, 085416 (2002).CrossRef M. A. van Huis, A. van Veen, H. Schut, C. V. Falub, S. V. H. Eijt, P. E. Mijnarends, and J. Kuriplach, “Positron confinement in embedded lithium nanoclusters,” Phys. Rev. B. 65, 085416 (2002).CrossRef
20.
go back to reference A. N. Orlov, A. M. Parshin, and Yu. V. Trushin, “Physical aspects of weakening of radiation swelling of construction alloys,” Zh. Tekh. Fiz. 53, 2367–2372 (1983). A. N. Orlov, A. M. Parshin, and Yu. V. Trushin, “Physical aspects of weakening of radiation swelling of construction alloys,” Zh. Tekh. Fiz. 53, 2367–2372 (1983).
21.
go back to reference B. P. Uberuaga, S. Choudhury, and A. Caro, “Ideal sinks are not always ideal: Radiation damage accumulation in nanocomposites,” J. Nucl. Mater. 462, 402–408 (2015).CrossRef B. P. Uberuaga, S. Choudhury, and A. Caro, “Ideal sinks are not always ideal: Radiation damage accumulation in nanocomposites,” J. Nucl. Mater. 462, 402–408 (2015).CrossRef
22.
go back to reference A. J. Ardell, B. Mastel, and J. J. Laidler, “High-voltage electron irradiation studies of several overaged γ/γ' alloys,” J. Nucl. Mater. 54, 313–324 (1974).CrossRef A. J. Ardell, B. Mastel, and J. J. Laidler, “High-voltage electron irradiation studies of several overaged γ/γ' alloys,” J. Nucl. Mater. 54, 313–324 (1974).CrossRef
23.
go back to reference I. J. Beyerlein, M. J. Demkowicz, A. Misra, and B. P. Uberuaga, “Defect-interface interactions,” Prog. Mater. Sci. 74, 125–210 (2015).CrossRef I. J. Beyerlein, M. J. Demkowicz, A. Misra, and B. P. Uberuaga, “Defect-interface interactions,” Prog. Mater. Sci. 74, 125–210 (2015).CrossRef
24.
go back to reference Z. Bi, B. P. Uberuaga, L. J. Vernon, J. A. Aguiar, E. Fu, S. Zheng, S. Zhang, Y. Wang, A. Misra, and Q. Jia, “Role of the interface on radiation damage in the SrTiO3/LaAlO3 heterostructure under Ne2+ ion irradiation,” J. Appl. Phys. 115, 124315 (2014).CrossRef Z. Bi, B. P. Uberuaga, L. J. Vernon, J. A. Aguiar, E. Fu, S. Zheng, S. Zhang, Y. Wang, A. Misra, and Q. Jia, “Role of the interface on radiation damage in the SrTiO3/LaAlO3 heterostructure under Ne2+ ion irradiation,” J. Appl. Phys. 115, 124315 (2014).CrossRef
25.
go back to reference X.-Y. Liu, B. P. Uberuaga, M. J. Demkowicz, T. C. Germann, A. Misra, and M. Nastasi, “Mechanism for recombination of radiation-induced point defects at interphase boundaries,” Phys. Rev. B 85, 012103 (2012).CrossRef X.-Y. Liu, B. P. Uberuaga, M. J. Demkowicz, T. C. Germann, A. Misra, and M. Nastasi, “Mechanism for recombination of radiation-induced point defects at interphase boundaries,” Phys. Rev. B 85, 012103 (2012).CrossRef
26.
go back to reference M. J. Demkowicz, R. G. Hoagland, B. P. Uberuaga, and A. Misra, “Influence of interface sink strength on the reduction of radiation-induced defect concentrations and fluxes in materials with large interface area per unit volume,” Phys. Rev. B 84, 104102 (2011).CrossRef M. J. Demkowicz, R. G. Hoagland, B. P. Uberuaga, and A. Misra, “Influence of interface sink strength on the reduction of radiation-induced defect concentrations and fluxes in materials with large interface area per unit volume,” Phys. Rev. B 84, 104102 (2011).CrossRef
Metadata
Title
Positron Annihilation Spectroscopy of the Accumulation of Vacancy Defects in an Aging Fe–Ni–Al Alloy Irradiated at 573 K
Authors
D. A. Perminov
A. P. Druzhkov
V. L. Arbuzov
Publication date
01-08-2018
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 8/2018
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X18080094

Other articles of this Issue 8/2018

Physics of Metals and Metallography 8/2018 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Scandium-Based Hexagonal-Closed Packed Multi-Component Alloys

ELECTRICAL AND MAGNETIC PROPERTIES

Similarity of Hysteresis Quantities