Skip to main content
Erschienen in: Physics of Metals and Metallography 8/2018

01.08.2018 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Positron Annihilation Spectroscopy of the Accumulation of Vacancy Defects in an Aging Fe–Ni–Al Alloy Irradiated at 573 K

verfasst von: D. A. Perminov, A. P. Druzhkov, V. L. Arbuzov

Erschienen in: Physics of Metals and Metallography | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The influence of intermetallic Ni3Al precipitates on the accumulation of vacancy defects in aged Fe–Ni–Al alloy at the initial stages of electron irradiation (5 × 10–4 dpa) at a temperature of 573 K has been studied using positron annihilation spectroscopy. The obtained results demonstrate that intermetallic precipitates inhibit the process of the accumulation of vacancy defects under irradiation. It has been found that these precipitates facilitate the mutual recombination of point defects that form under irradiation. This effect has been attributed to elastic stresses at the precipitate–matrix boundaries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. J. Zinkle and J. T. Busby, “Structural materials for fission & fusion energy,” Mater. Today. 12, 12–19 (2009).CrossRef S. J. Zinkle and J. T. Busby, “Structural materials for fission & fusion energy,” Mater. Today. 12, 12–19 (2009).CrossRef
2.
Zurück zum Zitat S. J. Zinkle and G. S. Was, “Materials challenges in nuclear energy,” Acta Mater. 61, 735–758 (2013).CrossRef S. J. Zinkle and G. S. Was, “Materials challenges in nuclear energy,” Acta Mater. 61, 735–758 (2013).CrossRef
3.
Zurück zum Zitat V. F. Zelenskii, I. M. Neklyudov, and T. P. Chernyaeva, Radiation defects and swelling of metals (Naukova dumka, Kiev, 1988) [in Russian]. V. F. Zelenskii, I. M. Neklyudov, and T. P. Chernyaeva, Radiation defects and swelling of metals (Naukova dumka, Kiev, 1988) [in Russian].
4.
Zurück zum Zitat J. F. Bates and R. W. Powell, “Irradiation-induced swelling in commercial alloys,” J. Nucl. Mater. 102, 200–213 (1981).CrossRef J. F. Bates and R. W. Powell, “Irradiation-induced swelling in commercial alloys,” J. Nucl. Mater. 102, 200–213 (1981).CrossRef
5.
Zurück zum Zitat R. Bullough, B. L. Eyre, and G. L. Kulcinski, “A systematic approach to the radiation damage problem,” J. Nucl. Mater. 68, 168–178 (1977).CrossRef R. Bullough, B. L. Eyre, and G. L. Kulcinski, “A systematic approach to the radiation damage problem,” J. Nucl. Mater. 68, 168–178 (1977).CrossRef
6.
Zurück zum Zitat V. V. Sagaradze and S. S. Lapin, “Unconventional approaches to the suppression of irradiation-induced swelling of stainless steels,” Phys. Met. Metallogr. 83, 417 (1997). V. V. Sagaradze and S. S. Lapin, “Unconventional approaches to the suppression of irradiation-induced swelling of stainless steels,” Phys. Met. Metallogr. 83, 417 (1997).
7.
Zurück zum Zitat V. V. Sagaradze, B. N. Goshchitskii, V. L. Arbuzov, and Yu. N. Zuev, “Precipitation-hardening austenite steel for fast neutron reactors,” Metalloved. Term. Obrab. Met. No. 8, 13–20 (2003). V. V. Sagaradze, B. N. Goshchitskii, V. L. Arbuzov, and Yu. N. Zuev, “Precipitation-hardening austenite steel for fast neutron reactors,” Metalloved. Term. Obrab. Met. No. 8, 13–20 (2003).
8.
Zurück zum Zitat G. R. Odette, M. J. Alinger, and B. D. Wirth, “Recent developments in irradiation resistant steels,” Annu. Rev. Mater. Res. 38, 471–503 (2008).CrossRef G. R. Odette, M. J. Alinger, and B. D. Wirth, “Recent developments in irradiation resistant steels,” Annu. Rev. Mater. Res. 38, 471–503 (2008).CrossRef
9.
Zurück zum Zitat V. I. Grafutin and E. P. Prokop’ev, “Positron annihilation spectroscopyin materials structure studies,” Phys.–Usp. 45, 59–74 (2002).CrossRef V. I. Grafutin and E. P. Prokop’ev, “Positron annihilation spectroscopyin materials structure studies,” Phys.–Usp. 45, 59–74 (2002).CrossRef
10.
Zurück zum Zitat A. P. Druzhkov, D. A. Perminov, V. L. Arbuzov, N. N. Stepanova, N. L. Pechorkina, “Positron confinement in intermetallic nanoparticles embedded in Fe–Ni–Al material,” J. Phys.: Condens. Matter. 16, 6395–6404 (2004). A. P. Druzhkov, D. A. Perminov, V. L. Arbuzov, N. N. Stepanova, N. L. Pechorkina, “Positron confinement in intermetallic nanoparticles embedded in Fe–Ni–Al material,” J. Phys.: Condens. Matter. 16, 6395–6404 (2004).
11.
Zurück zum Zitat D. A. Perminov, A. P. Druzhkov, and V. L. Arbuzov, “Positron-annihilation studies of the influence of nanodimensional intermetallic precipitates on the evolution of radiation defects in the Fe–Ni–Al alloy,” Phys. Met. Metallogr. 116, 1151–1158 (2015).CrossRef D. A. Perminov, A. P. Druzhkov, and V. L. Arbuzov, “Positron-annihilation studies of the influence of nanodimensional intermetallic precipitates on the evolution of radiation defects in the Fe–Ni–Al alloy,” Phys. Met. Metallogr. 116, 1151–1158 (2015).CrossRef
12.
Zurück zum Zitat A. P. Druzhkov, D. A. Perminov, and V. L. Arbuzov, “Effects of intermetallic nanoparticles on the evolution of vacancy defects in electron irradiated Fe–Ni–Al material,” J. Phys.: Condens. Matter. 18, 365–377 (2006). A. P. Druzhkov, D. A. Perminov, and V. L. Arbuzov, “Effects of intermetallic nanoparticles on the evolution of vacancy defects in electron irradiated Fe–Ni–Al material,” J. Phys.: Condens. Matter. 18, 365–377 (2006).
13.
Zurück zum Zitat A. P. Druzhkov, D. A. Perminov, and N. L. Pecherkina, “Positron annihilation spectroscopy characterization of effect of intermetallic nanoparticles on accumulation and annealing of vacancy defects in electron-irradiated Fe–Ni–Al alloy,” Philos. Mag. 88, 959–976 (2008).CrossRef A. P. Druzhkov, D. A. Perminov, and N. L. Pecherkina, “Positron annihilation spectroscopy characterization of effect of intermetallic nanoparticles on accumulation and annealing of vacancy defects in electron-irradiated Fe–Ni–Al alloy,” Philos. Mag. 88, 959–976 (2008).CrossRef
14.
Zurück zum Zitat D. A. Perminov, A. P. Druzhkov, and V. L. Arbuzov, “Role of intermetallic nanoparticles in radiation damage of austenitic Fe–Ni-based alloys studied by positron annihilation,” J. Nucl. Mater. 414, 186–193 (2011).CrossRef D. A. Perminov, A. P. Druzhkov, and V. L. Arbuzov, “Role of intermetallic nanoparticles in radiation damage of austenitic Fe–Ni-based alloys studied by positron annihilation,” J. Nucl. Mater. 414, 186–193 (2011).CrossRef
15.
Zurück zum Zitat J. Morillo, C. H. de Novion, and J. Dural, “Neutron and electron radiation defects in titanium and tantalum monocarbides: An electrical resistivity study,” Radiat. Eff. 55, 67–78 (1981).CrossRef J. Morillo, C. H. de Novion, and J. Dural, “Neutron and electron radiation defects in titanium and tantalum monocarbides: An electrical resistivity study,” Radiat. Eff. 55, 67–78 (1981).CrossRef
16.
Zurück zum Zitat M. Eldrup and B. N. Singh, “Studies of defects and defect agglomerates by positron annihilation spectroscopy,” J. Nucl. Mater. 251, 132–138 (1997).CrossRef M. Eldrup and B. N. Singh, “Studies of defects and defect agglomerates by positron annihilation spectroscopy,” J. Nucl. Mater. 251, 132–138 (1997).CrossRef
17.
Zurück zum Zitat A. P. Druzhkov, S. E. Danilov, D. A. Perminov, and V. L. Arbuzov, “Formation and evolution of intermetallic nanoparticles and vacancy defects under irradiation in Fe–Ni–Al ageing alloy characterized by resistivity measurements and positron annihilation,” J. Nucl. Mater. 476, 168–178 (2016).CrossRef A. P. Druzhkov, S. E. Danilov, D. A. Perminov, and V. L. Arbuzov, “Formation and evolution of intermetallic nanoparticles and vacancy defects under irradiation in Fe–Ni–Al ageing alloy characterized by resistivity measurements and positron annihilation,” J. Nucl. Mater. 476, 168–178 (2016).CrossRef
18.
Zurück zum Zitat L. C. Smedckjaer and M. J. Fluss, “Experimental methods of positron annihilation for the study of defects in metals,” Methods Exp. Phys. 21, 77–145 (1983).CrossRef L. C. Smedckjaer and M. J. Fluss, “Experimental methods of positron annihilation for the study of defects in metals,” Methods Exp. Phys. 21, 77–145 (1983).CrossRef
19.
Zurück zum Zitat M. A. van Huis, A. van Veen, H. Schut, C. V. Falub, S. V. H. Eijt, P. E. Mijnarends, and J. Kuriplach, “Positron confinement in embedded lithium nanoclusters,” Phys. Rev. B. 65, 085416 (2002).CrossRef M. A. van Huis, A. van Veen, H. Schut, C. V. Falub, S. V. H. Eijt, P. E. Mijnarends, and J. Kuriplach, “Positron confinement in embedded lithium nanoclusters,” Phys. Rev. B. 65, 085416 (2002).CrossRef
20.
Zurück zum Zitat A. N. Orlov, A. M. Parshin, and Yu. V. Trushin, “Physical aspects of weakening of radiation swelling of construction alloys,” Zh. Tekh. Fiz. 53, 2367–2372 (1983). A. N. Orlov, A. M. Parshin, and Yu. V. Trushin, “Physical aspects of weakening of radiation swelling of construction alloys,” Zh. Tekh. Fiz. 53, 2367–2372 (1983).
21.
Zurück zum Zitat B. P. Uberuaga, S. Choudhury, and A. Caro, “Ideal sinks are not always ideal: Radiation damage accumulation in nanocomposites,” J. Nucl. Mater. 462, 402–408 (2015).CrossRef B. P. Uberuaga, S. Choudhury, and A. Caro, “Ideal sinks are not always ideal: Radiation damage accumulation in nanocomposites,” J. Nucl. Mater. 462, 402–408 (2015).CrossRef
22.
Zurück zum Zitat A. J. Ardell, B. Mastel, and J. J. Laidler, “High-voltage electron irradiation studies of several overaged γ/γ' alloys,” J. Nucl. Mater. 54, 313–324 (1974).CrossRef A. J. Ardell, B. Mastel, and J. J. Laidler, “High-voltage electron irradiation studies of several overaged γ/γ' alloys,” J. Nucl. Mater. 54, 313–324 (1974).CrossRef
23.
Zurück zum Zitat I. J. Beyerlein, M. J. Demkowicz, A. Misra, and B. P. Uberuaga, “Defect-interface interactions,” Prog. Mater. Sci. 74, 125–210 (2015).CrossRef I. J. Beyerlein, M. J. Demkowicz, A. Misra, and B. P. Uberuaga, “Defect-interface interactions,” Prog. Mater. Sci. 74, 125–210 (2015).CrossRef
24.
Zurück zum Zitat Z. Bi, B. P. Uberuaga, L. J. Vernon, J. A. Aguiar, E. Fu, S. Zheng, S. Zhang, Y. Wang, A. Misra, and Q. Jia, “Role of the interface on radiation damage in the SrTiO3/LaAlO3 heterostructure under Ne2+ ion irradiation,” J. Appl. Phys. 115, 124315 (2014).CrossRef Z. Bi, B. P. Uberuaga, L. J. Vernon, J. A. Aguiar, E. Fu, S. Zheng, S. Zhang, Y. Wang, A. Misra, and Q. Jia, “Role of the interface on radiation damage in the SrTiO3/LaAlO3 heterostructure under Ne2+ ion irradiation,” J. Appl. Phys. 115, 124315 (2014).CrossRef
25.
Zurück zum Zitat X.-Y. Liu, B. P. Uberuaga, M. J. Demkowicz, T. C. Germann, A. Misra, and M. Nastasi, “Mechanism for recombination of radiation-induced point defects at interphase boundaries,” Phys. Rev. B 85, 012103 (2012).CrossRef X.-Y. Liu, B. P. Uberuaga, M. J. Demkowicz, T. C. Germann, A. Misra, and M. Nastasi, “Mechanism for recombination of radiation-induced point defects at interphase boundaries,” Phys. Rev. B 85, 012103 (2012).CrossRef
26.
Zurück zum Zitat M. J. Demkowicz, R. G. Hoagland, B. P. Uberuaga, and A. Misra, “Influence of interface sink strength on the reduction of radiation-induced defect concentrations and fluxes in materials with large interface area per unit volume,” Phys. Rev. B 84, 104102 (2011).CrossRef M. J. Demkowicz, R. G. Hoagland, B. P. Uberuaga, and A. Misra, “Influence of interface sink strength on the reduction of radiation-induced defect concentrations and fluxes in materials with large interface area per unit volume,” Phys. Rev. B 84, 104102 (2011).CrossRef
Metadaten
Titel
Positron Annihilation Spectroscopy of the Accumulation of Vacancy Defects in an Aging Fe–Ni–Al Alloy Irradiated at 573 K
verfasst von
D. A. Perminov
A. P. Druzhkov
V. L. Arbuzov
Publikationsdatum
01.08.2018
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 8/2018
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X18080094

Weitere Artikel der Ausgabe 8/2018

Physics of Metals and Metallography 8/2018 Zur Ausgabe