Skip to main content
Top
Published in: Journal of Materials Science 7/2016

21-12-2015 | Original Paper

Post-peak collapse and energy absorption in stochastic honeycombs

Authors: Megan Hostetter, Glenn D. Hibbard

Published in: Journal of Materials Science | Issue 7/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Stochastic honeycombs are a random, open cell honeycomb produced through a novel melt-stretching operation. While they have been shown to have excellent mechanical properties under out-of-plane compression, the energy absorption capacity of this cellular material has not yet been examined. The energy absorbed was determined over several of the integration intervals proposed in the literature as a function of density. For two intervals, the relationship between energy and density was linear, and for the other two, the rate of change in volumetric energy absorption capacity with density began to decrease at higher densities. This change happened at a core relative density of 11 %. Additionally, the post-peak collapse mechanisms of four sample sets of varying density were compressed and scanned sequentially through X-ray tomography after preloading to various characteristic strain values. Webs were classified on the basis of their connectivity (bound on both sides or bound on one and free on the other). Unlike conventional honeycombs where all webs undergo the same failure mechanism, the range in geometry of the webs within a given sample led to a range of collapse mechanisms: elastic buckling, plastic buckling, and plastic buckling with fracture. At lower density, all three failure modes could be present in the same sample. At higher density, plastic buckling accompanied by web fracture was the main mode of failure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ashby MF (2000) Metal foams. Butterworth-Heinemann, Boston Ashby MF (2000) Metal foams. Butterworth-Heinemann, Boston
2.
go back to reference Gibson LJ, Ashby MF (1997) Cellular solids: structures and properties. Cambridge University Press, CambridgeCrossRef Gibson LJ, Ashby MF (1997) Cellular solids: structures and properties. Cambridge University Press, CambridgeCrossRef
3.
go back to reference Heckele M, Schomburg WK (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14:R1–R14CrossRef Heckele M, Schomburg WK (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14:R1–R14CrossRef
4.
go back to reference Wadley HNG (2006) Multifunctional periodic cellular metals. Philos Trans A 364:31–68CrossRef Wadley HNG (2006) Multifunctional periodic cellular metals. Philos Trans A 364:31–68CrossRef
6.
go back to reference Hostetter M, Cordner B, Hibbard GD (2012) Stochastic honeycomb sandwich cores. Composites B 43:1024–1029CrossRef Hostetter M, Cordner B, Hibbard GD (2012) Stochastic honeycomb sandwich cores. Composites B 43:1024–1029CrossRef
7.
go back to reference Hamerton I, Azapagic A, Emsley A (2003) Polymers: the environment and sustainable development. Wiley, Hoboken Hamerton I, Azapagic A, Emsley A (2003) Polymers: the environment and sustainable development. Wiley, Hoboken
8.
go back to reference Hostetter M, Hibbard GD (2014) Architectural characteristics of stochastic honeycombs fabricated from varying melt strength polypropylenes. J Appl Polym Sci 131:40074CrossRef Hostetter M, Hibbard GD (2014) Architectural characteristics of stochastic honeycombs fabricated from varying melt strength polypropylenes. J Appl Polym Sci 131:40074CrossRef
9.
go back to reference ASTM C 365 (2005) Standard test for flatwise compressive properties of sandwich cores. ASTM International, West Conshohocken ASTM C 365 (2005) Standard test for flatwise compressive properties of sandwich cores. ASTM International, West Conshohocken
10.
go back to reference ASTM D 1238 (2004) Standard test method for melt flow rates of thermoplastics by extrusion plastometer. ASTM International, West Conshohocken ASTM D 1238 (2004) Standard test method for melt flow rates of thermoplastics by extrusion plastometer. ASTM International, West Conshohocken
12.
go back to reference Chaudhary BI, Barry RP, Tusim MH (2000) Foams made from blends of ethylene styrene interpolymers with polyethylene, polypropylene and polystyrene. J Cell Plast 36:397–421CrossRef Chaudhary BI, Barry RP, Tusim MH (2000) Foams made from blends of ethylene styrene interpolymers with polyethylene, polypropylene and polystyrene. J Cell Plast 36:397–421CrossRef
13.
go back to reference Russell BP, Deshpande VS, Wadley HNG (2008) Quasistatic deformation and failure modes of composite square honeycombs. J Mech Mater Struct 3:1315–1340CrossRef Russell BP, Deshpande VS, Wadley HNG (2008) Quasistatic deformation and failure modes of composite square honeycombs. J Mech Mater Struct 3:1315–1340CrossRef
14.
go back to reference Olurin OB, Fleck NA, Ashby MF (2000) Deformation and fracture of aluminium foams. Mater Sci Eng A 291:136–146CrossRef Olurin OB, Fleck NA, Ashby MF (2000) Deformation and fracture of aluminium foams. Mater Sci Eng A 291:136–146CrossRef
15.
go back to reference Li QM, Magkiriadis I, Harrigan JJ (2006) Compressive strain at the onset of densification of cellular solids. J Cell Plast 42:371–392CrossRef Li QM, Magkiriadis I, Harrigan JJ (2006) Compressive strain at the onset of densification of cellular solids. J Cell Plast 42:371–392CrossRef
16.
go back to reference Ashby MF (2006) The properties of foams and lattices. Philos Trans A 364:15–30CrossRef Ashby MF (2006) The properties of foams and lattices. Philos Trans A 364:15–30CrossRef
17.
go back to reference Avalle M, Belingardi G, Montanini R (2001) Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. Int J Impact Eng 25:455–472CrossRef Avalle M, Belingardi G, Montanini R (2001) Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. Int J Impact Eng 25:455–472CrossRef
18.
go back to reference Tan PJ, Harrigan JJ, Reid SR (2013) Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam. J Mater Sci Technol 18:480–488CrossRef Tan PJ, Harrigan JJ, Reid SR (2013) Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam. J Mater Sci Technol 18:480–488CrossRef
20.
go back to reference Ariyama T (1993) Cyclic deformation and relaxation characteristics in polypropylene. Polym Eng Sci 33:18–25CrossRef Ariyama T (1993) Cyclic deformation and relaxation characteristics in polypropylene. Polym Eng Sci 33:18–25CrossRef
21.
go back to reference Ariyama T (1993) Stress relaxation behavior after cyclic preloading in polypropylene. Polym Eng Sci 33:1494–1501CrossRef Ariyama T (1993) Stress relaxation behavior after cyclic preloading in polypropylene. Polym Eng Sci 33:1494–1501CrossRef
22.
go back to reference Wool RP, Statton WO (1974) Dynamic polarized infrared studies of stress relaxation and creep in polypropylene. J Polym Sci B 12:1575–1586 Wool RP, Statton WO (1974) Dynamic polarized infrared studies of stress relaxation and creep in polypropylene. J Polym Sci B 12:1575–1586
23.
go back to reference von Karman T (1941) The buckling of thin cylindrical shells under axial compression. J Aeronaut Sci 8:303–312CrossRef von Karman T (1941) The buckling of thin cylindrical shells under axial compression. J Aeronaut Sci 8:303–312CrossRef
24.
go back to reference Horton W, Bailey S, Edwards A (1966) Nonsymmetric buckle patterns in progressive plastic buckling. Exp Mech 6:433–444CrossRef Horton W, Bailey S, Edwards A (1966) Nonsymmetric buckle patterns in progressive plastic buckling. Exp Mech 6:433–444CrossRef
25.
go back to reference Rhodes J (2002) Buckling of thin plates and members—and early work on rectangular tubes. Thin Wall Struct 40:87–108CrossRef Rhodes J (2002) Buckling of thin plates and members—and early work on rectangular tubes. Thin Wall Struct 40:87–108CrossRef
26.
go back to reference Liang S, Chen HL (2006) Investigation on the square cell honeycomb structures under axial loading. Compos Struct 72:446–454CrossRef Liang S, Chen HL (2006) Investigation on the square cell honeycomb structures under axial loading. Compos Struct 72:446–454CrossRef
27.
go back to reference Zhang J, Ashby MF (1992) The out-of-plane properties of honeycombs. Int J Mech Sci 34:475–489CrossRef Zhang J, Ashby MF (1992) The out-of-plane properties of honeycombs. Int J Mech Sci 34:475–489CrossRef
28.
go back to reference Miller W, Smith CW, Evans KE (2011) Honeycomb cores with enhanced buckling strength. Compos Struct 93:1072–1077CrossRef Miller W, Smith CW, Evans KE (2011) Honeycomb cores with enhanced buckling strength. Compos Struct 93:1072–1077CrossRef
29.
go back to reference Wilbert A, Jang W-Y, Kyriakides S, Floccari JF (2011) Buckling and progressive crushing of laterally loaded honeycomb. Int J Sol Struct 48:803–816CrossRef Wilbert A, Jang W-Y, Kyriakides S, Floccari JF (2011) Buckling and progressive crushing of laterally loaded honeycomb. Int J Sol Struct 48:803–816CrossRef
30.
go back to reference Scarpa F, Blain S, Perrott D, Ruzzene M, Yates JR (2007) Elastic buckling of hexagonal chiral cell honeycombs. Composites A 38:280–289CrossRef Scarpa F, Blain S, Perrott D, Ruzzene M, Yates JR (2007) Elastic buckling of hexagonal chiral cell honeycombs. Composites A 38:280–289CrossRef
31.
go back to reference Wierzbicki T (1983) Crushing analysis of metal honeycombs. Int J Impact Eng 1:157–174CrossRef Wierzbicki T (1983) Crushing analysis of metal honeycombs. Int J Impact Eng 1:157–174CrossRef
32.
go back to reference Santosa S, Wierzbicki T (1998) On the modeling of crush behavior of a closed-cell aluminum foam structure. J Mech Phys Solids 46:645–669CrossRef Santosa S, Wierzbicki T (1998) On the modeling of crush behavior of a closed-cell aluminum foam structure. J Mech Phys Solids 46:645–669CrossRef
33.
go back to reference Xu S, Beynon JH, Ruan D, Lu G (2012) Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos Struct 94:2326–2336CrossRef Xu S, Beynon JH, Ruan D, Lu G (2012) Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos Struct 94:2326–2336CrossRef
34.
go back to reference Wu E, Jiang W-S (1997) Axial crush of metallic honeycombs. Int J Impact Eng 19:439–456CrossRef Wu E, Jiang W-S (1997) Axial crush of metallic honeycombs. Int J Impact Eng 19:439–456CrossRef
35.
go back to reference Deqiang S, Weihong Z, Yanbin W (2010) Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings. Compos Struct 92:2609–2621CrossRef Deqiang S, Weihong Z, Yanbin W (2010) Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings. Compos Struct 92:2609–2621CrossRef
36.
go back to reference Côté F, Deshpande VS, Fleck NA, Evans AG (2004) The out-of-plane compressive behavior of metallic honeycombs. Mater Sci Eng A 380:272–280CrossRef Côté F, Deshpande VS, Fleck NA, Evans AG (2004) The out-of-plane compressive behavior of metallic honeycombs. Mater Sci Eng A 380:272–280CrossRef
37.
go back to reference Stocchi A, Colabella L, Cisilino A, Álvarez V (2014) Manufacturing and testing of a sandwich panel honeycomb core reinforced with natural-fiber fabrics. Mater Des 55:394–403CrossRef Stocchi A, Colabella L, Cisilino A, Álvarez V (2014) Manufacturing and testing of a sandwich panel honeycomb core reinforced with natural-fiber fabrics. Mater Des 55:394–403CrossRef
38.
go back to reference Asprone D, Auricchio F, Menna C, Morganti S, Prota A, Reali A (2013) Statistical finite element analysis of the buckling behavior of honeycomb structures. Compos Struct 105:240–255CrossRef Asprone D, Auricchio F, Menna C, Morganti S, Prota A, Reali A (2013) Statistical finite element analysis of the buckling behavior of honeycomb structures. Compos Struct 105:240–255CrossRef
39.
go back to reference Heimbs S (2009) Virtual testing of sandwich core structures using dynamic finite element simulations. Comput Mater Sci 45:205–216CrossRef Heimbs S (2009) Virtual testing of sandwich core structures using dynamic finite element simulations. Comput Mater Sci 45:205–216CrossRef
40.
go back to reference Giglio M, Manes A, Gilioli A (2012) Investigations on sandwich core properties through an experimental–numerical approach. Composites B 43:361–374CrossRef Giglio M, Manes A, Gilioli A (2012) Investigations on sandwich core properties through an experimental–numerical approach. Composites B 43:361–374CrossRef
41.
go back to reference Sezgin FE, Tanoğlu M et al (2010) Mechanical behavior of polypropylene-based honeycomb-core composite sandwich structures. J Reinf Plast Compos 29:1569–1579CrossRef Sezgin FE, Tanoğlu M et al (2010) Mechanical behavior of polypropylene-based honeycomb-core composite sandwich structures. J Reinf Plast Compos 29:1569–1579CrossRef
Metadata
Title
Post-peak collapse and energy absorption in stochastic honeycombs
Authors
Megan Hostetter
Glenn D. Hibbard
Publication date
21-12-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 7/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9647-z

Other articles of this Issue 7/2016

Journal of Materials Science 7/2016 Go to the issue

Premium Partners