Skip to main content
Erschienen in: Journal of Materials Science 24/2014

01.12.2014 | Original Paper

Modeling the buckling strength of polypropylene stochastic honeycombs

verfasst von: Megan Hostetter, Glenn D. Hibbard

Erschienen in: Journal of Materials Science | Ausgabe 24/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of internal architecture on the mechanical properties of stochastic honeycombs was investigated by using four polypropylenes with varying rheological properties. The polymers were first characterized in terms of their thermal and mechanical properties, and then used to fabricate a set of stochastic honeycombs over a range of densities. The internal architecture was characterized by X-ray tomography, and the out-of-plane compressive properties of the stochastic honeycombs were determined. Overall, the strengths varied from 1 to 4 MPa over a core density range of 7–14 %. A thin-plate buckling model was developed to build a predictive strength model. This model was split into a material properties portion (dependent on the polymer stiffness) and an architectural portion (dependent on the fraction of bound webs in the honeycomb). The model was found to serve as a good first step towards predicting the strength of irregular honeycombs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hostetter M, Cordner B, Hibbard GD (2012) Stochastic honeycomb sandwich cores. Compos B 43:1024–1029CrossRef Hostetter M, Cordner B, Hibbard GD (2012) Stochastic honeycomb sandwich cores. Compos B 43:1024–1029CrossRef
2.
Zurück zum Zitat Hostetter M, Hibbard GD (2014) Architectural characteristics of stochastic honeycombs fabricated from varying melt strength polypropylenes. J Appl Polym Sci 131:40074CrossRef Hostetter M, Hibbard GD (2014) Architectural characteristics of stochastic honeycombs fabricated from varying melt strength polypropylenes. J Appl Polym Sci 131:40074CrossRef
3.
Zurück zum Zitat Van Krevelen DW (2009) Properties of Polymers, Their Estimation and Correlation with Chemical Structure, 4th edn. Elsevier, New York Van Krevelen DW (2009) Properties of Polymers, Their Estimation and Correlation with Chemical Structure, 4th edn. Elsevier, New York
4.
Zurück zum Zitat Galeski A (1999) Crystallization. In: Karger-Kocsis J (ed) Polypropylene: an A–Z guide. Kluwer, Dordrecht, pp 135–141CrossRef Galeski A (1999) Crystallization. In: Karger-Kocsis J (ed) Polypropylene: an A–Z guide. Kluwer, Dordrecht, pp 135–141CrossRef
5.
Zurück zum Zitat Maier C, Calafut T (1998) Polypropylene: the definitive user’s guide and databook. Plast Des Libr, Norwich Maier C, Calafut T (1998) Polypropylene: the definitive user’s guide and databook. Plast Des Libr, Norwich
6.
Zurück zum Zitat Ide F, Hasegawa A (1974) Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer. J Appl Polym Sci 18:963–974CrossRef Ide F, Hasegawa A (1974) Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer. J Appl Polym Sci 18:963–974CrossRef
7.
Zurück zum Zitat Svoboda P, Zeng C, Wang H, Lee LJ, Tomasko DL (2002) Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J Appl Polym Sci 85:1562–1570CrossRef Svoboda P, Zeng C, Wang H, Lee LJ, Tomasko DL (2002) Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J Appl Polym Sci 85:1562–1570CrossRef
8.
Zurück zum Zitat Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Il Nuovo Cimento Ser 10:40–51CrossRef Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Il Nuovo Cimento Ser 10:40–51CrossRef
9.
Zurück zum Zitat Nielsen AS, Batchelder DN, Pyrz R (2002) Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer 43:2671–2676CrossRef Nielsen AS, Batchelder DN, Pyrz R (2002) Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer 43:2671–2676CrossRef
10.
Zurück zum Zitat Asakawa H, Nishida K, Kanaya T, Tosaka M (2013) Giant single crystal of isotactic polypropylene showing near-equilibrium melting temperature. Polym J 45:287–292CrossRef Asakawa H, Nishida K, Kanaya T, Tosaka M (2013) Giant single crystal of isotactic polypropylene showing near-equilibrium melting temperature. Polym J 45:287–292CrossRef
11.
Zurück zum Zitat Yamada K, Hikosaka M, Toda A, Yamazaki S, Tagashira K (2003) Equilibrium melting temperature of isotactic polypropylene with high tacticity. 2. Determination by optical microscopy. Macromolecules 36:4802–4812CrossRef Yamada K, Hikosaka M, Toda A, Yamazaki S, Tagashira K (2003) Equilibrium melting temperature of isotactic polypropylene with high tacticity. 2. Determination by optical microscopy. Macromolecules 36:4802–4812CrossRef
12.
Zurück zum Zitat Yamada K, Hikosaka M, Toda A, Yamazaki S, Tagashira K (2003) Equilibrium melting temperature of isotactic polypropylene with high tacticity: 1. Determination by differential scanning calorimetry. Macromolecules 36:4790–4801CrossRef Yamada K, Hikosaka M, Toda A, Yamazaki S, Tagashira K (2003) Equilibrium melting temperature of isotactic polypropylene with high tacticity: 1. Determination by differential scanning calorimetry. Macromolecules 36:4790–4801CrossRef
13.
Zurück zum Zitat Cheng SZD, Janimak JJ, Zhang A, Hsieh ET (1991) Isotacticity effect on crystallization and melting in polypropylene fractions: 1. Crystalline structures and thermodynamic property changes. Polymer 32:648–655CrossRef Cheng SZD, Janimak JJ, Zhang A, Hsieh ET (1991) Isotacticity effect on crystallization and melting in polypropylene fractions: 1. Crystalline structures and thermodynamic property changes. Polymer 32:648–655CrossRef
14.
Zurück zum Zitat Nakamura K, Shimizu S, Umemoto S, Thierry A, Lotz B, Okui N (2008) Temperature dependence of crystal growth rate for α and β forms of isotactic polypropylene. Polym J 40:915–922CrossRef Nakamura K, Shimizu S, Umemoto S, Thierry A, Lotz B, Okui N (2008) Temperature dependence of crystal growth rate for α and β forms of isotactic polypropylene. Polym J 40:915–922CrossRef
15.
Zurück zum Zitat Fried JR (2003) Polymer science and technology, 2nd edn. Prentice Hall PTR, Upper Saddle River Fried JR (2003) Polymer science and technology, 2nd edn. Prentice Hall PTR, Upper Saddle River
16.
Zurück zum Zitat CES Polymer Selector (2013) Granta material intelligence. Cambridge, UK CES Polymer Selector (2013) Granta material intelligence. Cambridge, UK
17.
Zurück zum Zitat Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci 59:37–43CrossRef Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci 59:37–43CrossRef
18.
Zurück zum Zitat van der Wal A, Mulder JJ, Gaymans RJ (1998) Fracture of polypropylene: the effect of crystallinity. Polymer 39:5477–5481CrossRef van der Wal A, Mulder JJ, Gaymans RJ (1998) Fracture of polypropylene: the effect of crystallinity. Polymer 39:5477–5481CrossRef
19.
Zurück zum Zitat Xu S, Beynon JH, Ruan D, Lu G (2012) Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos Struct 94:2326–2336CrossRef Xu S, Beynon JH, Ruan D, Lu G (2012) Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos Struct 94:2326–2336CrossRef
20.
Zurück zum Zitat Zhang J, Ashby MF (1992) The out-of-plane properties of honeycombs. Int J Mech Sci 34:475–489CrossRef Zhang J, Ashby MF (1992) The out-of-plane properties of honeycombs. Int J Mech Sci 34:475–489CrossRef
21.
Zurück zum Zitat Côté F, Deshpande VS, Fleck NA, Evans AG (2004) The out-of-plane compressive behavior of metallic honeycombs. Mater Sci Eng A 380:272–280CrossRef Côté F, Deshpande VS, Fleck NA, Evans AG (2004) The out-of-plane compressive behavior of metallic honeycombs. Mater Sci Eng A 380:272–280CrossRef
22.
Zurück zum Zitat Aminanda Y, Castanié B, Barrau J, Thevenet P (2005) Experimental analysis and modeling of the crushing of honeycomb cores. Appl Compos Mater 12:213–227CrossRef Aminanda Y, Castanié B, Barrau J, Thevenet P (2005) Experimental analysis and modeling of the crushing of honeycomb cores. Appl Compos Mater 12:213–227CrossRef
23.
Zurück zum Zitat Lee HS, Hong SH, Lee JR, Kim YK (2002) Mechanical behavior and failure process during compressive and shear deformation of honeycomb composite at elevated temperatures. J Mater Sci 37:1265–1272. doi:10.1023/A:1014344228141 CrossRef Lee HS, Hong SH, Lee JR, Kim YK (2002) Mechanical behavior and failure process during compressive and shear deformation of honeycomb composite at elevated temperatures. J Mater Sci 37:1265–1272. doi:10.​1023/​A:​1014344228141 CrossRef
24.
Zurück zum Zitat Liang S, Chen HL (2006) Investigation on the square cell honeycomb structures under axial loading. Compos Struct 72:446–454CrossRef Liang S, Chen HL (2006) Investigation on the square cell honeycomb structures under axial loading. Compos Struct 72:446–454CrossRef
25.
Zurück zum Zitat Domenico A, Ferdinando A, Costantino M, Simone M, Andrea P, Alessandro R (2013) Statistical finite element analysis of the buckling behavior of honeycomb structures. Compos Struct 105:240–255CrossRef Domenico A, Ferdinando A, Costantino M, Simone M, Andrea P, Alessandro R (2013) Statistical finite element analysis of the buckling behavior of honeycomb structures. Compos Struct 105:240–255CrossRef
26.
Zurück zum Zitat Fan X, Verpoest I, Vandepitte D (2006) Finite element analysis of out-of-plane compressive properties of thermoplastic honeycomb. J Sandw Struct Mater 8:437–458CrossRef Fan X, Verpoest I, Vandepitte D (2006) Finite element analysis of out-of-plane compressive properties of thermoplastic honeycomb. J Sandw Struct Mater 8:437–458CrossRef
27.
Zurück zum Zitat Hohe J, Beckmann C (2012) Probabilistic homogenization of hexagonal honeycombs with perturbed microstructure. Mech Mater 49:13–29CrossRef Hohe J, Beckmann C (2012) Probabilistic homogenization of hexagonal honeycombs with perturbed microstructure. Mech Mater 49:13–29CrossRef
28.
Zurück zum Zitat Silva MJ, Hayes WC, Gibson LJ (1995) The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int J Mech Sci 37:1161–1177CrossRef Silva MJ, Hayes WC, Gibson LJ (1995) The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int J Mech Sci 37:1161–1177CrossRef
29.
Zurück zum Zitat Zhu HX, Hobdell JR, Windle AH (2001) Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J Mech Phys Solids 49:857–870CrossRef Zhu HX, Hobdell JR, Windle AH (2001) Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J Mech Phys Solids 49:857–870CrossRef
30.
Zurück zum Zitat Zhu HX, Thorpe SM, Windle AH (2006) The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs. Int J Solids Struct 43:1061–1078CrossRef Zhu HX, Thorpe SM, Windle AH (2006) The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs. Int J Solids Struct 43:1061–1078CrossRef
31.
Zurück zum Zitat Lee J, Choi JB, Choi K (1996) Application of homogenization FEM analysis to regular and re-entrant honeycomb structures. J Mater Sci 31:4105–4110. doi:10.1007/BF00352675 CrossRef Lee J, Choi JB, Choi K (1996) Application of homogenization FEM analysis to regular and re-entrant honeycomb structures. J Mater Sci 31:4105–4110. doi:10.​1007/​BF00352675 CrossRef
32.
Zurück zum Zitat Silva MJ, Gibson LJ (1997) The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int J Mech Sci 39:549–563CrossRef Silva MJ, Gibson LJ (1997) The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int J Mech Sci 39:549–563CrossRef
33.
Zurück zum Zitat Albuquerque JM, Fátima Vaz M, Fortes MA (1999) Effect of missing walls on the compression behaviour of honeycombs. Scr Mater 41:167–174CrossRef Albuquerque JM, Fátima Vaz M, Fortes MA (1999) Effect of missing walls on the compression behaviour of honeycombs. Scr Mater 41:167–174CrossRef
34.
Zurück zum Zitat Guo XE, Gibson LJ (1999) Behavior of intact and damaged honeycombs: a finite element study. Int J Mech Sci 41:85–105CrossRef Guo XE, Gibson LJ (1999) Behavior of intact and damaged honeycombs: a finite element study. Int J Mech Sci 41:85–105CrossRef
35.
Zurück zum Zitat Wang AJ, McDowell DL (2003) Effects of defects on in-plane properties of periodic metal honeycombs. Int J Mech Sci 45:1799–1813CrossRef Wang AJ, McDowell DL (2003) Effects of defects on in-plane properties of periodic metal honeycombs. Int J Mech Sci 45:1799–1813CrossRef
36.
Zurück zum Zitat Lautensack C, Sych T (2006) 3D Image analysis of open foams using random tesselations. Image Anal Stereol 25:87–93CrossRef Lautensack C, Sych T (2006) 3D Image analysis of open foams using random tesselations. Image Anal Stereol 25:87–93CrossRef
37.
Zurück zum Zitat Mecke KR (2000) Additivity, convexity, and beyond: applications of minkowski functionals in statistical physics. In: Mecke KR, Stoyan D (eds) Lecture notes in Physics vol 554. Springer, Berlin, pp 111–184 Mecke KR (2000) Additivity, convexity, and beyond: applications of minkowski functionals in statistical physics. In: Mecke KR, Stoyan D (eds) Lecture notes in Physics vol 554. Springer, Berlin, pp 111–184
38.
Zurück zum Zitat Frenkel G, Blumenfeld R, King PR, Blunt MJ (2009) Topological analysis of foams and tetrahedral structures. Adv Eng Mater 11:169–176CrossRef Frenkel G, Blumenfeld R, King PR, Blunt MJ (2009) Topological analysis of foams and tetrahedral structures. Adv Eng Mater 11:169–176CrossRef
39.
Zurück zum Zitat Schröder-Turk GE, Mickel W, Kapfer SC et al (2011) Minkowski tensor shape analysis of cellular, granular and porous structures. Adv Mater 23:2535–2553CrossRef Schröder-Turk GE, Mickel W, Kapfer SC et al (2011) Minkowski tensor shape analysis of cellular, granular and porous structures. Adv Mater 23:2535–2553CrossRef
40.
Zurück zum Zitat Michielsen K, De Raedt H (2001) Integral-geometry morphological image analysis. Phys Rep 347:461–538CrossRef Michielsen K, De Raedt H (2001) Integral-geometry morphological image analysis. Phys Rep 347:461–538CrossRef
41.
Zurück zum Zitat Ohser J, Mücklich F (2000) Statistical analysis of microstructures in materials science. Wiley, Chichester Ohser J, Mücklich F (2000) Statistical analysis of microstructures in materials science. Wiley, Chichester
42.
Zurück zum Zitat Legland D, Kiêu K, Devaux MF (2007) Computation of Minkowski measures on 2D and 3D binary images. Image Anal Stereol 26:83–92CrossRef Legland D, Kiêu K, Devaux MF (2007) Computation of Minkowski measures on 2D and 3D binary images. Image Anal Stereol 26:83–92CrossRef
43.
Zurück zum Zitat Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077CrossRef Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077CrossRef
44.
Zurück zum Zitat Kraynik AM, Reinelt DA, van Swol F (2004) Structure of random foam. Phys Rev Lett 93:208301CrossRef Kraynik AM, Reinelt DA, van Swol F (2004) Structure of random foam. Phys Rev Lett 93:208301CrossRef
45.
Zurück zum Zitat Lu L, Peter SJ, Lyman MD et al (2000) In vitro degradation of porous poly(l-lactic acid) foams. Biomaterials 21:1595–1605CrossRef Lu L, Peter SJ, Lyman MD et al (2000) In vitro degradation of porous poly(l-lactic acid) foams. Biomaterials 21:1595–1605CrossRef
46.
Zurück zum Zitat Zeschky J, Hofner T, Arnold C, Weibmann R, Bahloul-Hourlier D, Scheffler M, Greil P (2005) Polysilsesquioxane derived ceramic foams with gradient porosity. Acta Mater 53:927–937CrossRef Zeschky J, Hofner T, Arnold C, Weibmann R, Bahloul-Hourlier D, Scheffler M, Greil P (2005) Polysilsesquioxane derived ceramic foams with gradient porosity. Acta Mater 53:927–937CrossRef
47.
Zurück zum Zitat Bryan GH (1890) On the stability of a plane plate under thrusts in its own plane, with applications to the “buckling” of the sides of a ship. Proc Lond Math Soc 22:54–67CrossRef Bryan GH (1890) On the stability of a plane plate under thrusts in its own plane, with applications to the “buckling” of the sides of a ship. Proc Lond Math Soc 22:54–67CrossRef
48.
Zurück zum Zitat Gere JM, Timoshenko SP (1961) Theory of elastic stability, 2nd edn. McGraw-Hill, New York Gere JM, Timoshenko SP (1961) Theory of elastic stability, 2nd edn. McGraw-Hill, New York
49.
Zurück zum Zitat Rinde JA (1970) Poisson’s ratio for rigid plastic foams. J Appl Polym Sci 14:1913–1926CrossRef Rinde JA (1970) Poisson’s ratio for rigid plastic foams. J Appl Polym Sci 14:1913–1926CrossRef
50.
Zurück zum Zitat Callister WD, Rethwisch DG (2008) Fundamentals of materials science and engineering: an integrated approach, 3rd edn. Wiley, Hoboken Callister WD, Rethwisch DG (2008) Fundamentals of materials science and engineering: an integrated approach, 3rd edn. Wiley, Hoboken
51.
Zurück zum Zitat Zihlif AM, Duckett RA, Ward IM (1978) The Poisson’s ratio of ultra-drawn polyethylene and polypropylene fibres using Michelson interferometry. J Mater Sci 13:1837–1840. doi:10.1007/BF00548754 CrossRef Zihlif AM, Duckett RA, Ward IM (1978) The Poisson’s ratio of ultra-drawn polyethylene and polypropylene fibres using Michelson interferometry. J Mater Sci 13:1837–1840. doi:10.​1007/​BF00548754 CrossRef
52.
Zurück zum Zitat Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 4th edn. Elsevier, Amsterdam Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 4th edn. Elsevier, Amsterdam
53.
Zurück zum Zitat Allen HG, Bulson PS (1980) Background to buckling. McGraw-Hill Book Co., New York Allen HG, Bulson PS (1980) Background to buckling. McGraw-Hill Book Co., New York
54.
Zurück zum Zitat Bloom F, Coffin D (2000) Handbook of thin plate buckling and postbuckling. Chapman & Hall/CRC, Boca RatonCrossRef Bloom F, Coffin D (2000) Handbook of thin plate buckling and postbuckling. Chapman & Hall/CRC, Boca RatonCrossRef
Metadaten
Titel
Modeling the buckling strength of polypropylene stochastic honeycombs
verfasst von
Megan Hostetter
Glenn D. Hibbard
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 24/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8546-z

Weitere Artikel der Ausgabe 24/2014

Journal of Materials Science 24/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.