Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 10/2019

22-04-2019

Potential temperature sensing of oriented carbon-fiber filled composite and its resistance memory effect

Authors: Pei Huang, Zhidong Xia, Song Cui, Jinshu Wang, Shaofan Zhao

Published in: Journal of Materials Science: Materials in Electronics | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Conductive polymer composites have been applied in temperature sensing owing to its resistance response to temperature change. In this work, composites with short carbon fibers (CFs) filled in silicon rubber (SR) were 3D printed. The positive temperature coefficient (PTC) effect of the composite resistance behaved anisotropically due to the CFs’ orientation, where the PTC intensity was lower when tested along the CFs’ orientation than that along other directions. The composites owned an excellent PTC effect reproducibility at the temperature of 25 ~ 100 °C. In-situ observation shows that the CFs in the composites shifted about 2.62 ± 1.05 μm when the temperature increased from 25 °C to 80 °C. The resistance creep under isothermal aging treatment reveals that the composites could keep their resistance relatively stable at the isothermal aging of 20 ~ 80 °C. The mechanical loads could help the crept resistance to recover to its original value very quickly, which was referred to resistance memory effect (RME) in this article. CF/SR composite was finally connected into circuits as thermistor and temperature sensor, which verified a potential application for temperature sensing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. Valentini, S.B. Bon, N.M. Pugno, Severe graphene nanoplatelets aggregation as building block for the preparation of negative temperature coefficient and healable silicone rubber composites. Compos. Sci. Technol. 134, 125–131 (2016)CrossRef L. Valentini, S.B. Bon, N.M. Pugno, Severe graphene nanoplatelets aggregation as building block for the preparation of negative temperature coefficient and healable silicone rubber composites. Compos. Sci. Technol. 134, 125–131 (2016)CrossRef
2.
go back to reference Y. Iijima, H. Sakaue, Platinum porphyrin and luminescent polymer for two-color pressure- and temperature-sensing probes. Sens. Actuators, A 184(3), 128–133 (2012)CrossRef Y. Iijima, H. Sakaue, Platinum porphyrin and luminescent polymer for two-color pressure- and temperature-sensing probes. Sens. Actuators, A 184(3), 128–133 (2012)CrossRef
3.
go back to reference S. Wang, D.D.L. Chung, Temperature/light sensing using carbon fiber polymer-matrix composite. Compos. B Eng. 30(6), 591–601 (1999)CrossRef S. Wang, D.D.L. Chung, Temperature/light sensing using carbon fiber polymer-matrix composite. Compos. B Eng. 30(6), 591–601 (1999)CrossRef
4.
go back to reference F. Cellini, S.D. Peterson, M. Porfiri, Flow velocity and temperature sensing using thermosensitive fluorescent polymer seed particles in water. Int. J. Smart Nano Mater. 8(4), 232–252 (2017)CrossRef F. Cellini, S.D. Peterson, M. Porfiri, Flow velocity and temperature sensing using thermosensitive fluorescent polymer seed particles in water. Int. J. Smart Nano Mater. 8(4), 232–252 (2017)CrossRef
5.
go back to reference H.C. Neitzert, L. Vertuccio, A. Sorrentino, Epoxy/MWCNT composite as temperature sensor and electrical heating element. IEEE Trans. Nanotechnol. 10(4), 688–693 (2011)CrossRef H.C. Neitzert, L. Vertuccio, A. Sorrentino, Epoxy/MWCNT composite as temperature sensor and electrical heating element. IEEE Trans. Nanotechnol. 10(4), 688–693 (2011)CrossRef
6.
go back to reference S. Zhao, D. Luo, P. Zhan et al., Heating induced negative temperature coefficient effect in conductive graphene/polymer ternary nanocomposites with a segregated and double-percolated structure. J. Mater. Chem. C 5, 8233–8242 (2017)CrossRef S. Zhao, D. Luo, P. Zhan et al., Heating induced negative temperature coefficient effect in conductive graphene/polymer ternary nanocomposites with a segregated and double-percolated structure. J. Mater. Chem. C 5, 8233–8242 (2017)CrossRef
7.
go back to reference S.E. Lee, Y. Sohn, K. Cho et al., Suppression of negative temperature coefficient of resistance of multiwalled nanotube/silicone rubber composite through segregated conductive network and its application to laser-printing fusing element. Org. Electron. 37, 371–378 (2016)CrossRef S.E. Lee, Y. Sohn, K. Cho et al., Suppression of negative temperature coefficient of resistance of multiwalled nanotube/silicone rubber composite through segregated conductive network and its application to laser-printing fusing element. Org. Electron. 37, 371–378 (2016)CrossRef
8.
go back to reference S. Isaji, Y. Bin, M. Matsuo, Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films. Polymer 50(4), 1046–1053 (2009)CrossRef S. Isaji, Y. Bin, M. Matsuo, Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films. Polymer 50(4), 1046–1053 (2009)CrossRef
9.
go back to reference S.P. Bao, G.D. Liang, S.C. Tjong, Effect of mechanical stretching on electrical conductivity and positive temperature coefficient characteristics of poly(vinylidene fluoride)/carbon nanofiber composites prepared by non-solvent precipitation. Carbon 49(5), 1758–1768 (2011)CrossRef S.P. Bao, G.D. Liang, S.C. Tjong, Effect of mechanical stretching on electrical conductivity and positive temperature coefficient characteristics of poly(vinylidene fluoride)/carbon nanofiber composites prepared by non-solvent precipitation. Carbon 49(5), 1758–1768 (2011)CrossRef
10.
go back to reference A. Rybak, G. Boiteux, F. Melis et al., Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices. Compos. Sci. Technol. 70(2), 410–416 (2010)CrossRef A. Rybak, G. Boiteux, F. Melis et al., Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices. Compos. Sci. Technol. 70(2), 410–416 (2010)CrossRef
11.
go back to reference M.H. Al-Saleh, U. Sundararaj, A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1), 2–22 (2009)CrossRef M.H. Al-Saleh, U. Sundararaj, A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1), 2–22 (2009)CrossRef
12.
go back to reference Z. Zuo, Z. Xia, J. Nie, R. Xu, Electric anisotropy of carbon fiber-filled conductive composite vulcanized in electric field. J. Mater. Sci. 28(4), 3637–3647 (2017) Z. Zuo, Z. Xia, J. Nie, R. Xu, Electric anisotropy of carbon fiber-filled conductive composite vulcanized in electric field. J. Mater. Sci. 28(4), 3637–3647 (2017)
13.
go back to reference R. Zhang, P. Tang, J. Li et al., Study on filler content dependence of the onset of positive temperature coefficient (PTC) effect of electrical resistivity for UHMWPE/LDPE/CF composites based on their DC and AC electrical behaviors. Polymer 55(8), 2103–2112 (2014)CrossRef R. Zhang, P. Tang, J. Li et al., Study on filler content dependence of the onset of positive temperature coefficient (PTC) effect of electrical resistivity for UHMWPE/LDPE/CF composites based on their DC and AC electrical behaviors. Polymer 55(8), 2103–2112 (2014)CrossRef
14.
go back to reference X. Zhang, X. Zheng, D. Ren et al., Unusual positive temperature coefficient effect ofpolyolefin/carbon fiber conductive composites. Mater. Lett. 164, 587–590 (2016)CrossRef X. Zhang, X. Zheng, D. Ren et al., Unusual positive temperature coefficient effect ofpolyolefin/carbon fiber conductive composites. Mater. Lett. 164, 587–590 (2016)CrossRef
15.
go back to reference X. Zhang, S. Zheng, X. Zheng et al., Distinct positive temperature coefficient effect of polymer-carbon fiber composites evaluated in terms of polymer absorption on fiber surface. Phys. Chem. Chem. Phys. 18(11), 8081 (2016)CrossRef X. Zhang, S. Zheng, X. Zheng et al., Distinct positive temperature coefficient effect of polymer-carbon fiber composites evaluated in terms of polymer absorption on fiber surface. Phys. Chem. Chem. Phys. 18(11), 8081 (2016)CrossRef
16.
go back to reference Z. Mei, D.D.L. Chung, Effect of heating on the structure of carbon fiber polyphenylenesulfide-matrix composite, as studied by electrical resistance measurement. Polym. Compos. 19(6), 709–713 (2010)CrossRef Z. Mei, D.D.L. Chung, Effect of heating on the structure of carbon fiber polyphenylenesulfide-matrix composite, as studied by electrical resistance measurement. Polym. Compos. 19(6), 709–713 (2010)CrossRef
17.
go back to reference H.Z. Zou, X. Zhang, S.D. Zheng et al., PVDF/CF conductive composites with high sensitivity and stable reproducibility of positive temperature coefficient effect. Acta Polymerica Sinica 8, 1215–1219 (2017) H.Z. Zou, X. Zhang, S.D. Zheng et al., PVDF/CF conductive composites with high sensitivity and stable reproducibility of positive temperature coefficient effect. Acta Polymerica Sinica 8, 1215–1219 (2017)
18.
go back to reference X. Wang, G. Zhang, PTC effect of carbon fiber filled EPDM rubber composite. J. Mater. Sci. 19(11), 1105–1108 (2008) X. Wang, G. Zhang, PTC effect of carbon fiber filled EPDM rubber composite. J. Mater. Sci. 19(11), 1105–1108 (2008)
19.
go back to reference S. Zhao, G. Li, H. Liu et al., Positive temperature coefficient (PTC) evolution of segregated structural conductive polypropylene nanocomposites with visually traceable carbon black conductive network. Adv. Mater. Interfaces 4(17), 1–10 (2017) S. Zhao, G. Li, H. Liu et al., Positive temperature coefficient (PTC) evolution of segregated structural conductive polypropylene nanocomposites with visually traceable carbon black conductive network. Adv. Mater. Interfaces 4(17), 1–10 (2017)
20.
go back to reference J.S. Park, P.H. Kang, Y.C. Nho et al., Effects of thermal ageing treatment and antioxidants on the positive temperature coefficient characteristics of carbon black/polyethylene conductive composites. J. Appl. Polym. Sci. 89(9), 2316–2322 (2003)CrossRef J.S. Park, P.H. Kang, Y.C. Nho et al., Effects of thermal ageing treatment and antioxidants on the positive temperature coefficient characteristics of carbon black/polyethylene conductive composites. J. Appl. Polym. Sci. 89(9), 2316–2322 (2003)CrossRef
21.
go back to reference L. Shen, Z.D. Lou, Y.J. Qian, Effects of thermal volume expansion on positive temperature coefficient effect for carbon black filled polymer composites. J. Polym. Sci. Part B 45(22), 3078–3083 (2007)CrossRef L. Shen, Z.D. Lou, Y.J. Qian, Effects of thermal volume expansion on positive temperature coefficient effect for carbon black filled polymer composites. J. Polym. Sci. Part B 45(22), 3078–3083 (2007)CrossRef
22.
go back to reference J.W. Zha, D.H. Wu, Y. Yang et al., Enhanced positive temperature coefficient behavior of the high-density polyethylene composites with multi-dimensional carbon fillers and their use for temperature-sensing resistors. RSC Adv 7(19), 11338–12444 (2017)CrossRef J.W. Zha, D.H. Wu, Y. Yang et al., Enhanced positive temperature coefficient behavior of the high-density polyethylene composites with multi-dimensional carbon fillers and their use for temperature-sensing resistors. RSC Adv 7(19), 11338–12444 (2017)CrossRef
23.
go back to reference Y.C. Zhang, K. Dai, H. Pang et al., Temperature and time dependence of electrical resistivity in an anisotropically conductive polymer composite with in situ conductive microfibrils. J. Appl. Polym. Sci. 124(3), 1808–1814 (2012)CrossRef Y.C. Zhang, K. Dai, H. Pang et al., Temperature and time dependence of electrical resistivity in an anisotropically conductive polymer composite with in situ conductive microfibrils. J. Appl. Polym. Sci. 124(3), 1808–1814 (2012)CrossRef
24.
go back to reference H. Nakano, K. Shimizu, S. Takahashi et al., Resistivity-temperature characteristics of filler-dispersed polymer composites. Polymer 53(26), 6112–6117 (2012)CrossRef H. Nakano, K. Shimizu, S. Takahashi et al., Resistivity-temperature characteristics of filler-dispersed polymer composites. Polymer 53(26), 6112–6117 (2012)CrossRef
25.
go back to reference J. Zhang, S. Zhang, S. Feng et al., The correlativity of positive temperature coefficient effects in conductive silicone rubber. Polym. Int. 54(8), 1175–1179 (2005)CrossRef J. Zhang, S. Zhang, S. Feng et al., The correlativity of positive temperature coefficient effects in conductive silicone rubber. Polym. Int. 54(8), 1175–1179 (2005)CrossRef
26.
go back to reference P. Liu, C. Liu, Y. Huang et al., Transfer function and working principle of a pressure/temperature sensor based on carbon black/silicone rubber composites. J. Appl. Polym. Sci. 133(7), 1–9 (2016)CrossRef P. Liu, C. Liu, Y. Huang et al., Transfer function and working principle of a pressure/temperature sensor based on carbon black/silicone rubber composites. J. Appl. Polym. Sci. 133(7), 1–9 (2016)CrossRef
27.
go back to reference K. Chu, S.H. Park, Electrical heating behavior of flexible carbon nanotube composites with different aspect ratios. J. Ind. Eng. Chem. 35, 195–198 (2016)CrossRef K. Chu, S.H. Park, Electrical heating behavior of flexible carbon nanotube composites with different aspect ratios. J. Ind. Eng. Chem. 35, 195–198 (2016)CrossRef
28.
go back to reference H. Pang, Y.C. Zhang, T. Chen et al., Tunable positive temperature coefficient of resistivity in an electrically conducting polymer/graphene composite. Appl. Phys. Lett. 96(25), 1–3 (2010)CrossRef H. Pang, Y.C. Zhang, T. Chen et al., Tunable positive temperature coefficient of resistivity in an electrically conducting polymer/graphene composite. Appl. Phys. Lett. 96(25), 1–3 (2010)CrossRef
29.
go back to reference X. Zhang, S. Zheng, H. Zou et al., Two-step positive temperature coefficient effect with favorable reproducibility achieved by specific “island-bridge” electrical conductive networks in HDPE/PVDF/CNF composite. Compos. A Appl. Sci. Manuf. 94, 21–31 (2016)CrossRef X. Zhang, S. Zheng, H. Zou et al., Two-step positive temperature coefficient effect with favorable reproducibility achieved by specific “island-bridge” electrical conductive networks in HDPE/PVDF/CNF composite. Compos. A Appl. Sci. Manuf. 94, 21–31 (2016)CrossRef
30.
go back to reference W.L. Cheng, W.F. Wu, J.L. Song et al., A new kind of shape-stabilized PCMs with positive temperature coefficient (PTC) effect. Energy Convers. Manage. 79(3), 470–476 (2014)CrossRef W.L. Cheng, W.F. Wu, J.L. Song et al., A new kind of shape-stabilized PCMs with positive temperature coefficient (PTC) effect. Energy Convers. Manage. 79(3), 470–476 (2014)CrossRef
31.
go back to reference E. Asare, A. Basir, W. Tu et al., Effect of mixed fillers on positive temperature coefficient of conductive polymer composites. Nanocomposites 2(2), 58–64 (2016)CrossRef E. Asare, A. Basir, W. Tu et al., Effect of mixed fillers on positive temperature coefficient of conductive polymer composites. Nanocomposites 2(2), 58–64 (2016)CrossRef
32.
go back to reference A. Kono, K. Shimizu, H. Nakano et al., Positive-temperature-coefficient effect of electrical resistivity below melting point of poly(vinylidene fluoride) (PVDF) in Ni particle-dispersed PVDF composites. Polymer 53(8), 1760–1764 (2012)CrossRef A. Kono, K. Shimizu, H. Nakano et al., Positive-temperature-coefficient effect of electrical resistivity below melting point of poly(vinylidene fluoride) (PVDF) in Ni particle-dispersed PVDF composites. Polymer 53(8), 1760–1764 (2012)CrossRef
33.
go back to reference H. Porwal, E. Asare, Y. Liu et al., in Understanding the mechanism of positive thermal coefficient in conductive polymer composites. Xi’an: 21st International Conference on Composite Materials, 2017 H. Porwal, E. Asare, Y. Liu et al., in Understanding the mechanism of positive thermal coefficient in conductive polymer composites. Xi’an: 21st International Conference on Composite Materials, 2017
34.
go back to reference P. Huang, Z.D. Xia, S. Cui, 3D printing of carbon fiber-filled conductive silicon rubber. Mater. Des. 142, 11–21 (2018)CrossRef P. Huang, Z.D. Xia, S. Cui, 3D printing of carbon fiber-filled conductive silicon rubber. Mater. Des. 142, 11–21 (2018)CrossRef
35.
go back to reference B.G. Compton, J.A. Lewis, 3D-Printing of lightweight cellular composites. Adv. Mater. 26(34), 5930–5935 (2015)CrossRef B.G. Compton, J.A. Lewis, 3D-Printing of lightweight cellular composites. Adv. Mater. 26(34), 5930–5935 (2015)CrossRef
36.
go back to reference R.J. Crowson, M.J. Folkes, P.F. Bright, Rheology of short glass fiber-reinforced thermoplastics and its application to injection molding I. Fiber motion and viscosity measurement. Polym. Eng. Sci. 20(14), 925–933 (1980)CrossRef R.J. Crowson, M.J. Folkes, P.F. Bright, Rheology of short glass fiber-reinforced thermoplastics and its application to injection molding I. Fiber motion and viscosity measurement. Polym. Eng. Sci. 20(14), 925–933 (1980)CrossRef
37.
go back to reference S. Wen, S. Wang, D.D.L. Chung, Carbon fiber structural composites as thermistors. Sens. Actuators, A 78(2–3), 180–188 (1999)CrossRef S. Wen, S. Wang, D.D.L. Chung, Carbon fiber structural composites as thermistors. Sens. Actuators, A 78(2–3), 180–188 (1999)CrossRef
38.
go back to reference R.L. Littleton, Z.P. Luo, E.A. Ellis et al., Transverse coefficient of thermal expansion determination of carbon fibers using ESEM and TEM at high temperature. Microsc. Microanal. 9(S2), 540–541 (2003) R.L. Littleton, Z.P. Luo, E.A. Ellis et al., Transverse coefficient of thermal expansion determination of carbon fibers using ESEM and TEM at high temperature. Microsc. Microanal. 9(S2), 540–541 (2003)
39.
go back to reference X.Y. Zhang, B. Li, Z.Y. Fu et al., Resistance-temperature effect of the composite conductive polymer materials. Mater. Rev. 27, 174–178 (2013) X.Y. Zhang, B. Li, Z.Y. Fu et al., Resistance-temperature effect of the composite conductive polymer materials. Mater. Rev. 27, 174–178 (2013)
40.
go back to reference H. Zhou, Electric conduction and corrosion behaviors in conductive composites filled with nickel-coated carbon series particles. Beijing University of Technology, 2014 H. Zhou, Electric conduction and corrosion behaviors in conductive composites filled with nickel-coated carbon series particles. Beijing University of Technology, 2014
Metadata
Title
Potential temperature sensing of oriented carbon-fiber filled composite and its resistance memory effect
Authors
Pei Huang
Zhidong Xia
Song Cui
Jinshu Wang
Shaofan Zhao
Publication date
22-04-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 10/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01295-z

Other articles of this Issue 10/2019

Journal of Materials Science: Materials in Electronics 10/2019 Go to the issue