Skip to main content
Top
Published in: Evolutionary Intelligence 2/2021

10-01-2020 | Special Issue

Predicting bipolar disorder and schizophrenia based on non-overlapping genetic phenotypes using deep neural network

Authors: S. Karthik, M. Sudha

Published in: Evolutionary Intelligence | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Computational Psychiatry is an emerging field of science. It focuses on identifying the complex relationship between the brain’s neurobiology. Mental illness has recently become an important problem to be addressed as the number of people affected is increasing over time. Schizophrenia and Bipolar Disorder are two major types of psychiatric disorders. Most of the people are experienced these illness in their lifetime. But, diagnosing psychiatric disorders is even more a complex problem. Genetic factors play a vital role in developing mental illness. Interestingly, few psychiatric disorders have common genetic overlapping between each other. It causes detrimental effect on diagnosing the illness accurately. To overcome this existing issue, a Rank based Gene Biomarker Identification and Classification framework is proposed to identify the overlapping and non-overlapping gene patterns of bipolar disorder and schizophrenia. The dataset used in this experiment is obtained from Gene Expression Omnibus database. As an outcome of this experiment, seven biomarkers are identified as the overlapping genes. Also, 60 and 68 informative gene biomarkers are identified on bipolar disorder and schizophrenia dataset as feature subsets to discriminate the samples. Overlapping genes are eliminated to increase the diagnostic accuracy of the disorders. The performance of the proposed system is evaluated with standard existing machine learning algorithms. This proposed framework attained 97.01% and 95.65% accuracy on bipolar disorder and schizophrenia dataset with Deep Neural Network model outperformed other benchmarked algorithms and proved its efficacy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Patel KR, Cherian J, Gohil K, Atkinson D (2014) Schizophrenia: overview and treatment options. Pharm Therap 39(9):638 Patel KR, Cherian J, Gohil K, Atkinson D (2014) Schizophrenia: overview and treatment options. Pharm Therap 39(9):638
2.
go back to reference Picchioni MM, Murray RM (2007) Schizophrenia. BMJ (Clin Res ed.) 335(7610):91–95 Picchioni MM, Murray RM (2007) Schizophrenia. BMJ (Clin Res ed.) 335(7610):91–95
3.
go back to reference Owen MJ, Sawa A, Mortensen PB (2016) Schizophrenia. Lancet (London, England) 388(10039):86–97 Owen MJ, Sawa A, Mortensen PB (2016) Schizophrenia. Lancet (London, England) 388(10039):86–97
4.
go back to reference Jauhar S, McKenna PJ, Radua J, Fung E, Salvador R, Laws KR (2014) Cognitive—behavioral therapy for the symptoms of schizophrenia: systematic review and meta-analysis with examination of potential bias. Br J Psychiatry 204(1):20–29 Jauhar S, McKenna PJ, Radua J, Fung E, Salvador R, Laws KR (2014) Cognitive—behavioral therapy for the symptoms of schizophrenia: systematic review and meta-analysis with examination of potential bias. Br J Psychiatry 204(1):20–29
5.
go back to reference Kerner B (2014) Genetics of bipolar disorder. Appl Clin Genet 7:33 Kerner B (2014) Genetics of bipolar disorder. Appl Clin Genet 7:33
7.
go back to reference Geddes JR, Miklowitz DJ (2013) Treatment of bipolar disorder. The Lancet 381(9878):1672–1682 Geddes JR, Miklowitz DJ (2013) Treatment of bipolar disorder. The Lancet 381(9878):1672–1682
8.
go back to reference Hilty DM, Leamon MH, Lim RF, Kelly RH, Hales RE (2006) A review of bipolar disorder in adults. Psychiatry (Edgmont) 3(9):43 Hilty DM, Leamon MH, Lim RF, Kelly RH, Hales RE (2006) A review of bipolar disorder in adults. Psychiatry (Edgmont) 3(9):43
9.
go back to reference Phillips ML, Kupfer DJ (2013) Bipolar disorder diagnosis: challenges and future directions. The Lancet 381(9878):1663–1671 Phillips ML, Kupfer DJ (2013) Bipolar disorder diagnosis: challenges and future directions. The Lancet 381(9878):1663–1671
10.
go back to reference Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucl Acids Res 30(1):207–210 Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucl Acids Res 30(1):207–210
11.
go back to reference Iwamoto K, Bundo M, Kato T (2004) Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 14(2):241–253 Iwamoto K, Bundo M, Kato T (2004) Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 14(2):241–253
12.
go back to reference Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80 Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80
13.
go back to reference Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315 Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315
14.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl Acids Res 43(7):e47 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl Acids Res 43(7):e47
16.
go back to reference Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79(8):2554–2558MathSciNetMATH Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79(8):2554–2558MathSciNetMATH
17.
go back to reference Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386 Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386
18.
go back to reference Werbos PJ (1982) Applications of advances in nonlinear sensitivity analysis. System modeling and optimization. Springer, Berlin, pp 762–770 Werbos PJ (1982) Applications of advances in nonlinear sensitivity analysis. System modeling and optimization. Springer, Berlin, pp 762–770
19.
go back to reference LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436 LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436
20.
go back to reference Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 5(4):373–401 Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 5(4):373–401
21.
go back to reference Sordo M (2002) Introduction to neural networks in healthcare. Open Clin Knowl Manag Med Care Sordo M (2002) Introduction to neural networks in healthcare. Open Clin Knowl Manag Med Care
22.
go back to reference Sawicki MP, Samara G, Hurwitz M, Passaro E (1993) Human genome project. Am J Surg 165(2):258–264 Sawicki MP, Samara G, Hurwitz M, Passaro E (1993) Human genome project. Am J Surg 165(2):258–264
23.
go back to reference Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J et al (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16(5):991–1006 Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J et al (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16(5):991–1006
24.
go back to reference Dwivedi AK (2018) Artificial neural network model for effective cancer classification using microarray gene expression data. Neural Comput Appl 29(12):1545–1554 Dwivedi AK (2018) Artificial neural network model for effective cancer classification using microarray gene expression data. Neural Comput Appl 29(12):1545–1554
25.
go back to reference Vanitha CDA, Devaraj D, Venkatesulu M (2015) Gene expression data classification using support vector machine and mutual information-based gene selection. Proc Comput Sci 47:13–21 Vanitha CDA, Devaraj D, Venkatesulu M (2015) Gene expression data classification using support vector machine and mutual information-based gene selection. Proc Comput Sci 47:13–21
26.
go back to reference Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17 Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17
27.
go back to reference Garro BA, Rodríguez K, Vázquez RA (2016) Classification of DNA microarrays using artificial neural networks and ABC algorithm. Appl Soft Comput 38:548–560 Garro BA, Rodríguez K, Vázquez RA (2016) Classification of DNA microarrays using artificial neural networks and ABC algorithm. Appl Soft Comput 38:548–560
28.
go back to reference Chen YC, Ke WC, Chiu HW (2014) Risk classification of cancer survival using ANN with gene expression data from multiple laboratories. Comput Biol Med 48:1–7 Chen YC, Ke WC, Chiu HW (2014) Risk classification of cancer survival using ANN with gene expression data from multiple laboratories. Comput Biol Med 48:1–7
29.
go back to reference Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Meltzer PS (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7(6):673 Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Meltzer PS (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7(6):673
30.
go back to reference Wei JS, Greer BT, Westermann F, Steinberg SM, Son CG, Chen QR, Catchpoole D (2004) Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Can Res 64(19):6883–6891 Wei JS, Greer BT, Westermann F, Steinberg SM, Son CG, Chen QR, Catchpoole D (2004) Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Can Res 64(19):6883–6891
31.
go back to reference Cho SB, Won HH (2007) Cancer classification using ensemble of neural networks with multiple significant gene subsets. Appl Intell 26(3):243–250MATH Cho SB, Won HH (2007) Cancer classification using ensemble of neural networks with multiple significant gene subsets. Appl Intell 26(3):243–250MATH
32.
go back to reference Pal NR, Aguan K, Sharma A, Amari SI (2007) Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering. BMC Bioinform 8(1):5 Pal NR, Aguan K, Sharma A, Amari SI (2007) Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering. BMC Bioinform 8(1):5
33.
go back to reference Takahashi M, Hayashi H, Watanabe Y, Sawamura K, Fukui N, Watanabe J, Hori T (2010) Diagnostic classification of schizophrenia by neural network analysis of blood-based gene expression signatures. Schizophr Res 119(1–3):210–218 Takahashi M, Hayashi H, Watanabe Y, Sawamura K, Fukui N, Watanabe J, Hori T (2010) Diagnostic classification of schizophrenia by neural network analysis of blood-based gene expression signatures. Schizophr Res 119(1–3):210–218
34.
go back to reference Huang X, Liu H, Li X, Guan L, Li J, Tellier LCAM, Zhang J (2018) Revealing Alzheimer’s disease genes spectrum in the whole-genome by machine learning. BMC Neurol 18(1):5 Huang X, Liu H, Li X, Guan L, Li J, Tellier LCAM, Zhang J (2018) Revealing Alzheimer’s disease genes spectrum in the whole-genome by machine learning. BMC Neurol 18(1):5
35.
go back to reference Logotheti M, Pilalis E, Venizelos N, Kolisis F, Chatziioannou A (2016) Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. Biom Biostat Int J 4(5):00106 Logotheti M, Pilalis E, Venizelos N, Kolisis F, Chatziioannou A (2016) Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. Biom Biostat Int J 4(5):00106
36.
37.
go back to reference Oh DH, Kim IB, Kim SH, Ahn DH (2017) Predicting autism spectrum disorder using blood-based gene expression signatures and machine learning. Clin Psychopharmacol Neuro Sci Off Sci J Korean Coll Neuropsychopharmacol 15(1):47–52 Oh DH, Kim IB, Kim SH, Ahn DH (2017) Predicting autism spectrum disorder using blood-based gene expression signatures and machine learning. Clin Psychopharmacol Neuro Sci Off Sci J Korean Coll Neuropsychopharmacol 15(1):47–52
38.
go back to reference Karstoft KI, Galatzer-Levy IR, Statnikov A, Li Z, Shalev AY (2015) Bridging a translational gap: using machine learning to improve the prediction of PTSD. BMC Psychiatry 15(1):30 Karstoft KI, Galatzer-Levy IR, Statnikov A, Li Z, Shalev AY (2015) Bridging a translational gap: using machine learning to improve the prediction of PTSD. BMC Psychiatry 15(1):30
39.
go back to reference Deeb SJ, Tyanova S, Hummel M, Schmidt-Supprian M, Cox J, Mann M (2015) Machine learning based classification of diffuse large B-cell lymphoma patients by their protein expression profiles. Mol Cell Proteom 14(11):2947–2960 Deeb SJ, Tyanova S, Hummel M, Schmidt-Supprian M, Cox J, Mann M (2015) Machine learning based classification of diffuse large B-cell lymphoma patients by their protein expression profiles. Mol Cell Proteom 14(11):2947–2960
40.
go back to reference Cai Z, Xu D, Zhang Q, Zhang J, Ngai SM, Shao J (2015) Classification of lung cancer using ensemble-based feature selection and machine learning methods. Mol BioSyst 11(3):791–800 Cai Z, Xu D, Zhang Q, Zhang J, Ngai SM, Shao J (2015) Classification of lung cancer using ensemble-based feature selection and machine learning methods. Mol BioSyst 11(3):791–800
42.
go back to reference Zafeiris D, Rutella S, Ball GR (2018) An artificial neural network integrated pipeline for biomarker discovery using Alzheimer’s disease as a case study. Comput Struct Biotechnol J 16:77–87 Zafeiris D, Rutella S, Ball GR (2018) An artificial neural network integrated pipeline for biomarker discovery using Alzheimer’s disease as a case study. Comput Struct Biotechnol J 16:77–87
43.
go back to reference Katsila T, Spyroulias GA, Patrinos GP, Matsoukas MT (2016) Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 14:177–184 Katsila T, Spyroulias GA, Patrinos GP, Matsoukas MT (2016) Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 14:177–184
44.
go back to reference Li S, Todor A, Luo R (2016) Blood transcriptomics and metabolomics for personalized medicine. Comput Struct Biotechnol J 14:1–7 Li S, Todor A, Luo R (2016) Blood transcriptomics and metabolomics for personalized medicine. Comput Struct Biotechnol J 14:1–7
45.
go back to reference Lin X, Zhao Y, Song WM, Zhang B (2015) Molecular classification and prediction in gastric cancer. Comput Struct Biotechnol J 13:448–458 Lin X, Zhao Y, Song WM, Zhang B (2015) Molecular classification and prediction in gastric cancer. Comput Struct Biotechnol J 13:448–458
46.
go back to reference Rapisuwon S, Vietsch EE, Wellstein A (2016) Circulating biomarkers to monitor cancer progression and treatment. Comput Struct Biotechnol J 14:211–222 Rapisuwon S, Vietsch EE, Wellstein A (2016) Circulating biomarkers to monitor cancer progression and treatment. Comput Struct Biotechnol J 14:211–222
47.
go back to reference Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I (2017) Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J 15:104–116 Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I (2017) Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J 15:104–116
48.
go back to reference Bartel J, Krumsiek J, Theis FJ (2013) Statistical methods for the analysis of high-throughput metabolomics data. Comput Struct Biotechnol J 4(5):e201301009 Bartel J, Krumsiek J, Theis FJ (2013) Statistical methods for the analysis of high-throughput metabolomics data. Comput Struct Biotechnol J 4(5):e201301009
49.
go back to reference Tripoliti EE, Papadopoulos TG, Karanasiou GS, Naka KK, Fotiadis DI (2017) Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques. Comput Struct Biotechnol J 15:26–47 Tripoliti EE, Papadopoulos TG, Karanasiou GS, Naka KK, Fotiadis DI (2017) Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques. Comput Struct Biotechnol J 15:26–47
50.
go back to reference Sudha M (2017) Evolutionary and neural computing based decision support system for disease diagnosis from clinical data sets in medical practice. J Med Syst 41(11):178 Sudha M (2017) Evolutionary and neural computing based decision support system for disease diagnosis from clinical data sets in medical practice. J Med Syst 41(11):178
51.
go back to reference Razmjooy N, Sheykhahmad FR, Ghadimi N (2018) A hybrid neural network–world cup optimization algorithm for melanoma detection. Open Med 13(1):9–16 Razmjooy N, Sheykhahmad FR, Ghadimi N (2018) A hybrid neural network–world cup optimization algorithm for melanoma detection. Open Med 13(1):9–16
52.
go back to reference Yu D, Wang Y, Liu H, Jermsittiparsert K, Razmjooy N (2019) System identification of PEM fuel cells using an improved Elman neural network and a new hybrid optimization algorithm. Energy Rep 5:1365–1374 Yu D, Wang Y, Liu H, Jermsittiparsert K, Razmjooy N (2019) System identification of PEM fuel cells using an improved Elman neural network and a new hybrid optimization algorithm. Energy Rep 5:1365–1374
53.
go back to reference Namadchian A, Ramezani M, Razmjooy N (2016) A new meta-heuristic algorithm for optimization based on variance reduction of guassian distribution. Majlesi J Electr Eng 10(4):49 Namadchian A, Ramezani M, Razmjooy N (2016) A new meta-heuristic algorithm for optimization based on variance reduction of guassian distribution. Majlesi J Electr Eng 10(4):49
54.
go back to reference Razmjooy N, Ramezani M (2016) Training wavelet neural networks using hybrid particle swarm optimization and gravitational search algorithm for system identification. Int J Mechatron Electr Comput Technol 6(21):2987–2997 Razmjooy N, Ramezani M (2016) Training wavelet neural networks using hybrid particle swarm optimization and gravitational search algorithm for system identification. Int J Mechatron Electr Comput Technol 6(21):2987–2997
55.
go back to reference Razmjooy N, Khalilpour M, Ramezani M (2016) A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: theory and its application in PID designing for AVR system. J Control Autom Electr Syst 27(4):419–440 Razmjooy N, Khalilpour M, Ramezani M (2016) A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: theory and its application in PID designing for AVR system. J Control Autom Electr Syst 27(4):419–440
Metadata
Title
Predicting bipolar disorder and schizophrenia based on non-overlapping genetic phenotypes using deep neural network
Authors
S. Karthik
M. Sudha
Publication date
10-01-2020
Publisher
Springer Berlin Heidelberg
Published in
Evolutionary Intelligence / Issue 2/2021
Print ISSN: 1864-5909
Electronic ISSN: 1864-5917
DOI
https://doi.org/10.1007/s12065-019-00346-y

Other articles of this Issue 2/2021

Evolutionary Intelligence 2/2021 Go to the issue

Premium Partner