Skip to main content
Erschienen in: Evolutionary Intelligence 2/2021

10.01.2020 | Special Issue

Predicting bipolar disorder and schizophrenia based on non-overlapping genetic phenotypes using deep neural network

verfasst von: S. Karthik, M. Sudha

Erschienen in: Evolutionary Intelligence | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Computational Psychiatry is an emerging field of science. It focuses on identifying the complex relationship between the brain’s neurobiology. Mental illness has recently become an important problem to be addressed as the number of people affected is increasing over time. Schizophrenia and Bipolar Disorder are two major types of psychiatric disorders. Most of the people are experienced these illness in their lifetime. But, diagnosing psychiatric disorders is even more a complex problem. Genetic factors play a vital role in developing mental illness. Interestingly, few psychiatric disorders have common genetic overlapping between each other. It causes detrimental effect on diagnosing the illness accurately. To overcome this existing issue, a Rank based Gene Biomarker Identification and Classification framework is proposed to identify the overlapping and non-overlapping gene patterns of bipolar disorder and schizophrenia. The dataset used in this experiment is obtained from Gene Expression Omnibus database. As an outcome of this experiment, seven biomarkers are identified as the overlapping genes. Also, 60 and 68 informative gene biomarkers are identified on bipolar disorder and schizophrenia dataset as feature subsets to discriminate the samples. Overlapping genes are eliminated to increase the diagnostic accuracy of the disorders. The performance of the proposed system is evaluated with standard existing machine learning algorithms. This proposed framework attained 97.01% and 95.65% accuracy on bipolar disorder and schizophrenia dataset with Deep Neural Network model outperformed other benchmarked algorithms and proved its efficacy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Patel KR, Cherian J, Gohil K, Atkinson D (2014) Schizophrenia: overview and treatment options. Pharm Therap 39(9):638 Patel KR, Cherian J, Gohil K, Atkinson D (2014) Schizophrenia: overview and treatment options. Pharm Therap 39(9):638
2.
Zurück zum Zitat Picchioni MM, Murray RM (2007) Schizophrenia. BMJ (Clin Res ed.) 335(7610):91–95 Picchioni MM, Murray RM (2007) Schizophrenia. BMJ (Clin Res ed.) 335(7610):91–95
3.
Zurück zum Zitat Owen MJ, Sawa A, Mortensen PB (2016) Schizophrenia. Lancet (London, England) 388(10039):86–97 Owen MJ, Sawa A, Mortensen PB (2016) Schizophrenia. Lancet (London, England) 388(10039):86–97
4.
Zurück zum Zitat Jauhar S, McKenna PJ, Radua J, Fung E, Salvador R, Laws KR (2014) Cognitive—behavioral therapy for the symptoms of schizophrenia: systematic review and meta-analysis with examination of potential bias. Br J Psychiatry 204(1):20–29 Jauhar S, McKenna PJ, Radua J, Fung E, Salvador R, Laws KR (2014) Cognitive—behavioral therapy for the symptoms of schizophrenia: systematic review and meta-analysis with examination of potential bias. Br J Psychiatry 204(1):20–29
5.
Zurück zum Zitat Kerner B (2014) Genetics of bipolar disorder. Appl Clin Genet 7:33 Kerner B (2014) Genetics of bipolar disorder. Appl Clin Genet 7:33
7.
Zurück zum Zitat Geddes JR, Miklowitz DJ (2013) Treatment of bipolar disorder. The Lancet 381(9878):1672–1682 Geddes JR, Miklowitz DJ (2013) Treatment of bipolar disorder. The Lancet 381(9878):1672–1682
8.
Zurück zum Zitat Hilty DM, Leamon MH, Lim RF, Kelly RH, Hales RE (2006) A review of bipolar disorder in adults. Psychiatry (Edgmont) 3(9):43 Hilty DM, Leamon MH, Lim RF, Kelly RH, Hales RE (2006) A review of bipolar disorder in adults. Psychiatry (Edgmont) 3(9):43
9.
Zurück zum Zitat Phillips ML, Kupfer DJ (2013) Bipolar disorder diagnosis: challenges and future directions. The Lancet 381(9878):1663–1671 Phillips ML, Kupfer DJ (2013) Bipolar disorder diagnosis: challenges and future directions. The Lancet 381(9878):1663–1671
10.
Zurück zum Zitat Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucl Acids Res 30(1):207–210 Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucl Acids Res 30(1):207–210
11.
Zurück zum Zitat Iwamoto K, Bundo M, Kato T (2004) Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 14(2):241–253 Iwamoto K, Bundo M, Kato T (2004) Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 14(2):241–253
12.
Zurück zum Zitat Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80 Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80
13.
Zurück zum Zitat Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315 Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315
14.
Zurück zum Zitat Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl Acids Res 43(7):e47 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl Acids Res 43(7):e47
16.
Zurück zum Zitat Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79(8):2554–2558MathSciNetMATH Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79(8):2554–2558MathSciNetMATH
17.
Zurück zum Zitat Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386 Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386
18.
Zurück zum Zitat Werbos PJ (1982) Applications of advances in nonlinear sensitivity analysis. System modeling and optimization. Springer, Berlin, pp 762–770 Werbos PJ (1982) Applications of advances in nonlinear sensitivity analysis. System modeling and optimization. Springer, Berlin, pp 762–770
19.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436 LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436
20.
Zurück zum Zitat Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 5(4):373–401 Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 5(4):373–401
21.
Zurück zum Zitat Sordo M (2002) Introduction to neural networks in healthcare. Open Clin Knowl Manag Med Care Sordo M (2002) Introduction to neural networks in healthcare. Open Clin Knowl Manag Med Care
22.
Zurück zum Zitat Sawicki MP, Samara G, Hurwitz M, Passaro E (1993) Human genome project. Am J Surg 165(2):258–264 Sawicki MP, Samara G, Hurwitz M, Passaro E (1993) Human genome project. Am J Surg 165(2):258–264
23.
Zurück zum Zitat Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J et al (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16(5):991–1006 Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J et al (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16(5):991–1006
24.
Zurück zum Zitat Dwivedi AK (2018) Artificial neural network model for effective cancer classification using microarray gene expression data. Neural Comput Appl 29(12):1545–1554 Dwivedi AK (2018) Artificial neural network model for effective cancer classification using microarray gene expression data. Neural Comput Appl 29(12):1545–1554
25.
Zurück zum Zitat Vanitha CDA, Devaraj D, Venkatesulu M (2015) Gene expression data classification using support vector machine and mutual information-based gene selection. Proc Comput Sci 47:13–21 Vanitha CDA, Devaraj D, Venkatesulu M (2015) Gene expression data classification using support vector machine and mutual information-based gene selection. Proc Comput Sci 47:13–21
26.
Zurück zum Zitat Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17 Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17
27.
Zurück zum Zitat Garro BA, Rodríguez K, Vázquez RA (2016) Classification of DNA microarrays using artificial neural networks and ABC algorithm. Appl Soft Comput 38:548–560 Garro BA, Rodríguez K, Vázquez RA (2016) Classification of DNA microarrays using artificial neural networks and ABC algorithm. Appl Soft Comput 38:548–560
28.
Zurück zum Zitat Chen YC, Ke WC, Chiu HW (2014) Risk classification of cancer survival using ANN with gene expression data from multiple laboratories. Comput Biol Med 48:1–7 Chen YC, Ke WC, Chiu HW (2014) Risk classification of cancer survival using ANN with gene expression data from multiple laboratories. Comput Biol Med 48:1–7
29.
Zurück zum Zitat Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Meltzer PS (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7(6):673 Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Meltzer PS (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7(6):673
30.
Zurück zum Zitat Wei JS, Greer BT, Westermann F, Steinberg SM, Son CG, Chen QR, Catchpoole D (2004) Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Can Res 64(19):6883–6891 Wei JS, Greer BT, Westermann F, Steinberg SM, Son CG, Chen QR, Catchpoole D (2004) Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Can Res 64(19):6883–6891
31.
Zurück zum Zitat Cho SB, Won HH (2007) Cancer classification using ensemble of neural networks with multiple significant gene subsets. Appl Intell 26(3):243–250MATH Cho SB, Won HH (2007) Cancer classification using ensemble of neural networks with multiple significant gene subsets. Appl Intell 26(3):243–250MATH
32.
Zurück zum Zitat Pal NR, Aguan K, Sharma A, Amari SI (2007) Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering. BMC Bioinform 8(1):5 Pal NR, Aguan K, Sharma A, Amari SI (2007) Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering. BMC Bioinform 8(1):5
33.
Zurück zum Zitat Takahashi M, Hayashi H, Watanabe Y, Sawamura K, Fukui N, Watanabe J, Hori T (2010) Diagnostic classification of schizophrenia by neural network analysis of blood-based gene expression signatures. Schizophr Res 119(1–3):210–218 Takahashi M, Hayashi H, Watanabe Y, Sawamura K, Fukui N, Watanabe J, Hori T (2010) Diagnostic classification of schizophrenia by neural network analysis of blood-based gene expression signatures. Schizophr Res 119(1–3):210–218
34.
Zurück zum Zitat Huang X, Liu H, Li X, Guan L, Li J, Tellier LCAM, Zhang J (2018) Revealing Alzheimer’s disease genes spectrum in the whole-genome by machine learning. BMC Neurol 18(1):5 Huang X, Liu H, Li X, Guan L, Li J, Tellier LCAM, Zhang J (2018) Revealing Alzheimer’s disease genes spectrum in the whole-genome by machine learning. BMC Neurol 18(1):5
35.
Zurück zum Zitat Logotheti M, Pilalis E, Venizelos N, Kolisis F, Chatziioannou A (2016) Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. Biom Biostat Int J 4(5):00106 Logotheti M, Pilalis E, Venizelos N, Kolisis F, Chatziioannou A (2016) Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. Biom Biostat Int J 4(5):00106
36.
37.
Zurück zum Zitat Oh DH, Kim IB, Kim SH, Ahn DH (2017) Predicting autism spectrum disorder using blood-based gene expression signatures and machine learning. Clin Psychopharmacol Neuro Sci Off Sci J Korean Coll Neuropsychopharmacol 15(1):47–52 Oh DH, Kim IB, Kim SH, Ahn DH (2017) Predicting autism spectrum disorder using blood-based gene expression signatures and machine learning. Clin Psychopharmacol Neuro Sci Off Sci J Korean Coll Neuropsychopharmacol 15(1):47–52
38.
Zurück zum Zitat Karstoft KI, Galatzer-Levy IR, Statnikov A, Li Z, Shalev AY (2015) Bridging a translational gap: using machine learning to improve the prediction of PTSD. BMC Psychiatry 15(1):30 Karstoft KI, Galatzer-Levy IR, Statnikov A, Li Z, Shalev AY (2015) Bridging a translational gap: using machine learning to improve the prediction of PTSD. BMC Psychiatry 15(1):30
39.
Zurück zum Zitat Deeb SJ, Tyanova S, Hummel M, Schmidt-Supprian M, Cox J, Mann M (2015) Machine learning based classification of diffuse large B-cell lymphoma patients by their protein expression profiles. Mol Cell Proteom 14(11):2947–2960 Deeb SJ, Tyanova S, Hummel M, Schmidt-Supprian M, Cox J, Mann M (2015) Machine learning based classification of diffuse large B-cell lymphoma patients by their protein expression profiles. Mol Cell Proteom 14(11):2947–2960
40.
Zurück zum Zitat Cai Z, Xu D, Zhang Q, Zhang J, Ngai SM, Shao J (2015) Classification of lung cancer using ensemble-based feature selection and machine learning methods. Mol BioSyst 11(3):791–800 Cai Z, Xu D, Zhang Q, Zhang J, Ngai SM, Shao J (2015) Classification of lung cancer using ensemble-based feature selection and machine learning methods. Mol BioSyst 11(3):791–800
42.
Zurück zum Zitat Zafeiris D, Rutella S, Ball GR (2018) An artificial neural network integrated pipeline for biomarker discovery using Alzheimer’s disease as a case study. Comput Struct Biotechnol J 16:77–87 Zafeiris D, Rutella S, Ball GR (2018) An artificial neural network integrated pipeline for biomarker discovery using Alzheimer’s disease as a case study. Comput Struct Biotechnol J 16:77–87
43.
Zurück zum Zitat Katsila T, Spyroulias GA, Patrinos GP, Matsoukas MT (2016) Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 14:177–184 Katsila T, Spyroulias GA, Patrinos GP, Matsoukas MT (2016) Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 14:177–184
44.
Zurück zum Zitat Li S, Todor A, Luo R (2016) Blood transcriptomics and metabolomics for personalized medicine. Comput Struct Biotechnol J 14:1–7 Li S, Todor A, Luo R (2016) Blood transcriptomics and metabolomics for personalized medicine. Comput Struct Biotechnol J 14:1–7
45.
Zurück zum Zitat Lin X, Zhao Y, Song WM, Zhang B (2015) Molecular classification and prediction in gastric cancer. Comput Struct Biotechnol J 13:448–458 Lin X, Zhao Y, Song WM, Zhang B (2015) Molecular classification and prediction in gastric cancer. Comput Struct Biotechnol J 13:448–458
46.
Zurück zum Zitat Rapisuwon S, Vietsch EE, Wellstein A (2016) Circulating biomarkers to monitor cancer progression and treatment. Comput Struct Biotechnol J 14:211–222 Rapisuwon S, Vietsch EE, Wellstein A (2016) Circulating biomarkers to monitor cancer progression and treatment. Comput Struct Biotechnol J 14:211–222
47.
Zurück zum Zitat Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I (2017) Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J 15:104–116 Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I (2017) Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J 15:104–116
48.
Zurück zum Zitat Bartel J, Krumsiek J, Theis FJ (2013) Statistical methods for the analysis of high-throughput metabolomics data. Comput Struct Biotechnol J 4(5):e201301009 Bartel J, Krumsiek J, Theis FJ (2013) Statistical methods for the analysis of high-throughput metabolomics data. Comput Struct Biotechnol J 4(5):e201301009
49.
Zurück zum Zitat Tripoliti EE, Papadopoulos TG, Karanasiou GS, Naka KK, Fotiadis DI (2017) Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques. Comput Struct Biotechnol J 15:26–47 Tripoliti EE, Papadopoulos TG, Karanasiou GS, Naka KK, Fotiadis DI (2017) Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques. Comput Struct Biotechnol J 15:26–47
50.
Zurück zum Zitat Sudha M (2017) Evolutionary and neural computing based decision support system for disease diagnosis from clinical data sets in medical practice. J Med Syst 41(11):178 Sudha M (2017) Evolutionary and neural computing based decision support system for disease diagnosis from clinical data sets in medical practice. J Med Syst 41(11):178
51.
Zurück zum Zitat Razmjooy N, Sheykhahmad FR, Ghadimi N (2018) A hybrid neural network–world cup optimization algorithm for melanoma detection. Open Med 13(1):9–16 Razmjooy N, Sheykhahmad FR, Ghadimi N (2018) A hybrid neural network–world cup optimization algorithm for melanoma detection. Open Med 13(1):9–16
52.
Zurück zum Zitat Yu D, Wang Y, Liu H, Jermsittiparsert K, Razmjooy N (2019) System identification of PEM fuel cells using an improved Elman neural network and a new hybrid optimization algorithm. Energy Rep 5:1365–1374 Yu D, Wang Y, Liu H, Jermsittiparsert K, Razmjooy N (2019) System identification of PEM fuel cells using an improved Elman neural network and a new hybrid optimization algorithm. Energy Rep 5:1365–1374
53.
Zurück zum Zitat Namadchian A, Ramezani M, Razmjooy N (2016) A new meta-heuristic algorithm for optimization based on variance reduction of guassian distribution. Majlesi J Electr Eng 10(4):49 Namadchian A, Ramezani M, Razmjooy N (2016) A new meta-heuristic algorithm for optimization based on variance reduction of guassian distribution. Majlesi J Electr Eng 10(4):49
54.
Zurück zum Zitat Razmjooy N, Ramezani M (2016) Training wavelet neural networks using hybrid particle swarm optimization and gravitational search algorithm for system identification. Int J Mechatron Electr Comput Technol 6(21):2987–2997 Razmjooy N, Ramezani M (2016) Training wavelet neural networks using hybrid particle swarm optimization and gravitational search algorithm for system identification. Int J Mechatron Electr Comput Technol 6(21):2987–2997
55.
Zurück zum Zitat Razmjooy N, Khalilpour M, Ramezani M (2016) A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: theory and its application in PID designing for AVR system. J Control Autom Electr Syst 27(4):419–440 Razmjooy N, Khalilpour M, Ramezani M (2016) A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: theory and its application in PID designing for AVR system. J Control Autom Electr Syst 27(4):419–440
Metadaten
Titel
Predicting bipolar disorder and schizophrenia based on non-overlapping genetic phenotypes using deep neural network
verfasst von
S. Karthik
M. Sudha
Publikationsdatum
10.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Evolutionary Intelligence / Ausgabe 2/2021
Print ISSN: 1864-5909
Elektronische ISSN: 1864-5917
DOI
https://doi.org/10.1007/s12065-019-00346-y

Weitere Artikel der Ausgabe 2/2021

Evolutionary Intelligence 2/2021 Zur Ausgabe

Premium Partner