Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 5/2022

29-07-2021 | Research Article-Chemical Engineering

Predicting Gas Permeability through Mixed-matrix Membranes Filled with Nanofillers of Different Shapes

Authors: Muhammad Sarfraz, Aqash Arshad, M. Ba-Shammakh

Published in: Arabian Journal for Science and Engineering | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Gas permeation through mixed-matrix membranes (MMMs) filled with fillers of non-spherical shapes can be theoretically predicted through different analytical models on the basis of ideal (two-phase) or non-ideal (three-phase) morphology of membrane structure. The predicting capability of different models was evaluated by comparing the estimated carbon dioxide (CO2) permeance through composite membranes against the available experimental permeation data of Ultrason®/ZIF-300, poly(ethersulfone)/functionalized-CNTs and Matrimid®/graphene oxide hybrid membranes. Experimental-to-theoretical discrepancy in CO2 permeability for composite membranes containing fillers of different shapes was determined by calculating percentage average absolute relative error (AARE%) for each model. General order of data fitting for different models while considering typical values of morphological parameters was found as: Maxwell < Bruggeman < Lewis‐Nielsen < Pal < Maxwell–Wagner-Sillar < Cussler having AARE% values of 41.2, 34.4, 35.7, 27.6, 8.0 and zero, respectively. Scanning electron microscopic (SEM) images of composite membranes helped to explore the morphology of incorporated filler particles and to improve the predicting capacity of the assumed models. The Maxwell–Wagner-Sillar model adopted for composite membranes containing spheroid- and cylindroid-shaped filler particles best fitted the experimental data while the Cussler model best fitted for hybrid membranes filled with planar flake-shaped filler particles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.W. Baker, Membrane Technology and Applications, 2nd Ed., John Wiley (2004). R.W. Baker, Membrane Technology and Applications, 2nd Ed., John Wiley (2004).
2.
go back to reference Askari, M.; Chung, T.-S.: Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. J. Membr. Sci. 444, 173–183 (2013)CrossRef Askari, M.; Chung, T.-S.: Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. J. Membr. Sci. 444, 173–183 (2013)CrossRef
3.
go back to reference Amedi, H.R.; Aghajani, M.: Gas separation in mixed matrix membranes based on polyurethane containing SiO2, ZSM-5, and ZIF-8 nanoparticles. J. Nat. Gas Sci. Eng. 35, 695–702 (2016)CrossRef Amedi, H.R.; Aghajani, M.: Gas separation in mixed matrix membranes based on polyurethane containing SiO2, ZSM-5, and ZIF-8 nanoparticles. J. Nat. Gas Sci. Eng. 35, 695–702 (2016)CrossRef
4.
go back to reference Vinoba, M.; Bhagiyalakshmi, M.; Alqaheem, Y.; Alomair, A.A.; Pérez, A.; Rana, M.S.: Recent progress of fillers in mixed matrix membranes for CO2 separation: a review. Sep. Purif. Technol. 188, 431–450 (2017)CrossRef Vinoba, M.; Bhagiyalakshmi, M.; Alqaheem, Y.; Alomair, A.A.; Pérez, A.; Rana, M.S.: Recent progress of fillers in mixed matrix membranes for CO2 separation: a review. Sep. Purif. Technol. 188, 431–450 (2017)CrossRef
5.
go back to reference M. Sarfraz, Carbon capture via mixed-matrix membranes containing nanomaterials and metal-organic frameworks. In: Zhang Z., Zhang W., Lichtfouse E. (eds) Membranes for Environmental Applications, Environmental Chemistry for a Sustainable World, vol 42. Springer, Cham (March 2020). M. Sarfraz, Carbon capture via mixed-matrix membranes containing nanomaterials and metal-organic frameworks. In: Zhang Z., Zhang W., Lichtfouse E. (eds) Membranes for Environmental Applications, Environmental Chemistry for a Sustainable World, vol 42. Springer, Cham (March 2020).
6.
go back to reference Rezakazemi, M.; Ebadi Amooghin, A.; Montazer-Rahmati, M.M.; Ismail, A.F.; Matsuura, T.: State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog. Polym. Sci. 39, 817–861 (2014)CrossRef Rezakazemi, M.; Ebadi Amooghin, A.; Montazer-Rahmati, M.M.; Ismail, A.F.; Matsuura, T.: State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog. Polym. Sci. 39, 817–861 (2014)CrossRef
7.
go back to reference Zhang, C.; Dai, Y.; Johnson, J.R.; Karvan, O.; Koros, W.J.: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Membr. Sci. 389, 34–42 (2012)CrossRef Zhang, C.; Dai, Y.; Johnson, J.R.; Karvan, O.; Koros, W.J.: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Membr. Sci. 389, 34–42 (2012)CrossRef
8.
go back to reference Faiz, R.; Li, K.: Olefin/paraffin separation using membrane based facilitated transport/chemical absorption techniques. Chem. Eng. Sci. 73, 261–284 (2012)CrossRef Faiz, R.; Li, K.: Olefin/paraffin separation using membrane based facilitated transport/chemical absorption techniques. Chem. Eng. Sci. 73, 261–284 (2012)CrossRef
9.
go back to reference Liu, J.; Bae, T.-H.; Qiu, W.; Husain, S.; Nair, S.; Jones, C.W.; Chance, R.R.; Koros, W.J.: Butane isomer transport properties of 6FDA-DAM and MFI-6FDA-DAM mixed matrix membranes. J. Memb. Sci. 343, 157–163 (2009)CrossRef Liu, J.; Bae, T.-H.; Qiu, W.; Husain, S.; Nair, S.; Jones, C.W.; Chance, R.R.; Koros, W.J.: Butane isomer transport properties of 6FDA-DAM and MFI-6FDA-DAM mixed matrix membranes. J. Memb. Sci. 343, 157–163 (2009)CrossRef
10.
go back to reference Ismail, A.F.; Lai, P.Y.: Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation. Sep. Purif. Technol. 33, 127–143 (2003)CrossRef Ismail, A.F.; Lai, P.Y.: Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation. Sep. Purif. Technol. 33, 127–143 (2003)CrossRef
11.
go back to reference Xiao, Y.; Low, B.T.; Hosseini, S.S.; Chung, T.S.; Paul, D.R.: The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas-A review. Prog. Polym. Sci. 34, 561–580 (2009)CrossRef Xiao, Y.; Low, B.T.; Hosseini, S.S.; Chung, T.S.; Paul, D.R.: The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas-A review. Prog. Polym. Sci. 34, 561–580 (2009)CrossRef
12.
go back to reference Jang, K.-S.; Kim, H.-J.; Johnson, J.R.; Kim, W.-G.; Koros, W.J.; Jones, C.W.; Nair, S.: Modified mesoporous silica gas separation membranes on polymeric hollow fibers. Chem. Mater. 23, 3025–3028 (2011)CrossRef Jang, K.-S.; Kim, H.-J.; Johnson, J.R.; Kim, W.-G.; Koros, W.J.; Jones, C.W.; Nair, S.: Modified mesoporous silica gas separation membranes on polymeric hollow fibers. Chem. Mater. 23, 3025–3028 (2011)CrossRef
13.
go back to reference Vu, D.Q.; Koros, W.J.; Miller, S.J.: Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior. J. Membr. Sci. 211, 335–348 (2003)CrossRef Vu, D.Q.; Koros, W.J.; Miller, S.J.: Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior. J. Membr. Sci. 211, 335–348 (2003)CrossRef
14.
go back to reference Lin, H.; Freeman, B.D.: Materials selection guidelines for membranes that remove CO2 from gas mixtures. J. Mol. Struct. 739, 57–74 (2005)CrossRef Lin, H.; Freeman, B.D.: Materials selection guidelines for membranes that remove CO2 from gas mixtures. J. Mol. Struct. 739, 57–74 (2005)CrossRef
15.
go back to reference McLeary, E.F.; Jansen, J.C.; Kapteijn, F.: Zeolite based films, membranes and membrane reactors: progress and prospects. Micropor. Mesopor. Mater. 90, 198–220 (2006)CrossRef McLeary, E.F.; Jansen, J.C.; Kapteijn, F.: Zeolite based films, membranes and membrane reactors: progress and prospects. Micropor. Mesopor. Mater. 90, 198–220 (2006)CrossRef
16.
go back to reference Vinh-Thang, H.; Kaliaguine, S.: Predictive models for mixed-matrix membrane performance: a review. Chem. Rev. 113, 4980–5028 (2013)CrossRef Vinh-Thang, H.; Kaliaguine, S.: Predictive models for mixed-matrix membrane performance: a review. Chem. Rev. 113, 4980–5028 (2013)CrossRef
17.
go back to reference Chung, T.-S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S.: Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507 (2007)CrossRef Chung, T.-S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S.: Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507 (2007)CrossRef
18.
go back to reference Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D.: Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, 6343 (2017)CrossRef Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D.: Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, 6343 (2017)CrossRef
19.
go back to reference Bushell, A.F.; Attfield, M.P.; Mason, C.R.; Budd, P.M.; Yampolskii, Y.; Starannikova, L.; Rebrov, A.; Bazzarelli, F.; Bernardo, P.; Carolus Jansen, J.; Lanč, M.; Friess, K.; Shantarovich, V.; Gustov, V.; Isaeva, V.: Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci. 427, 48–62 (2013)CrossRef Bushell, A.F.; Attfield, M.P.; Mason, C.R.; Budd, P.M.; Yampolskii, Y.; Starannikova, L.; Rebrov, A.; Bazzarelli, F.; Bernardo, P.; Carolus Jansen, J.; Lanč, M.; Friess, K.; Shantarovich, V.; Gustov, V.; Isaeva, V.: Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci. 427, 48–62 (2013)CrossRef
20.
go back to reference Gorgojo, P.; Uriel, S.; Tellez, C.; Coronas, J.: Development of mixed matrix membranes based on zeolite Nu-6(2) for gas separation. J. Microporous Mesoporous Mater. 115, 85–92 (2008)CrossRef Gorgojo, P.; Uriel, S.; Tellez, C.; Coronas, J.: Development of mixed matrix membranes based on zeolite Nu-6(2) for gas separation. J. Microporous Mesoporous Mater. 115, 85–92 (2008)CrossRef
21.
go back to reference Ahn, J.; Chung, W.-J.; Pinnau, I.; Guiver, M.D.: Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membr. Sci. 314, 123–133 (2008)CrossRef Ahn, J.; Chung, W.-J.; Pinnau, I.; Guiver, M.D.: Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membr. Sci. 314, 123–133 (2008)CrossRef
22.
go back to reference Liu, Y.; Peng, D.; He, G.; Wang, S.; Li, Y.; Wu, H.; Jiang, Z.: Enhanced CO2 permeability of membranes by incorporating polyzwitterion@CNT composite particles into polyimide matrix. ACS Appl. Mater. Interfaces 6, 13051–13060 (2014)CrossRef Liu, Y.; Peng, D.; He, G.; Wang, S.; Li, Y.; Wu, H.; Jiang, Z.: Enhanced CO2 permeability of membranes by incorporating polyzwitterion@CNT composite particles into polyimide matrix. ACS Appl. Mater. Interfaces 6, 13051–13060 (2014)CrossRef
23.
go back to reference Kim, S.; Marand, E.; Ida, J.; Guliants, V.V.: Polysulfone and mesoporous molecular sieve MCM-48 mixed matrix membranes for gas separation. Chem. Mater. 18, 1149–1155 (2006)CrossRef Kim, S.; Marand, E.; Ida, J.; Guliants, V.V.: Polysulfone and mesoporous molecular sieve MCM-48 mixed matrix membranes for gas separation. Chem. Mater. 18, 1149–1155 (2006)CrossRef
24.
go back to reference Zornoza, B.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F.: Metal organic framework based mixed matrix membranes: an increasingly important field of research with a large application potential. Microporous Mesoporous Mater. 166, 67–78 (2013)CrossRef Zornoza, B.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F.: Metal organic framework based mixed matrix membranes: an increasingly important field of research with a large application potential. Microporous Mesoporous Mater. 166, 67–78 (2013)CrossRef
25.
go back to reference Robeson, L.M.: The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008)CrossRef Robeson, L.M.: The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008)CrossRef
26.
go back to reference Pal, R.: Permeation models for mixed matrix membranes. J Colloid Interface Sci. 317, 191–198 (2008)CrossRef Pal, R.: Permeation models for mixed matrix membranes. J Colloid Interface Sci. 317, 191–198 (2008)CrossRef
27.
go back to reference Song, Q.; Nataraj, S.K.; Roussenova, M.V.; Tan, J.C.; Hughes, D.J.; Li, W.; Bourgoin, P.; Alam, M.A.; Cheetham, A.K.; Al-Muhtaseb, S.A.; Sivaniah, E.: Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 5, 8359–8369 (2012)CrossRef Song, Q.; Nataraj, S.K.; Roussenova, M.V.; Tan, J.C.; Hughes, D.J.; Li, W.; Bourgoin, P.; Alam, M.A.; Cheetham, A.K.; Al-Muhtaseb, S.A.; Sivaniah, E.: Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 5, 8359–8369 (2012)CrossRef
28.
go back to reference Hashemifard, S.A.; Ismail, A.F.; Matsuura, T.: A new theoretical gas permeability model using resistance modeling for mixed matrix membrane systems. J. Membr. Sci. 350, 259–268 (2010)CrossRef Hashemifard, S.A.; Ismail, A.F.; Matsuura, T.: A new theoretical gas permeability model using resistance modeling for mixed matrix membrane systems. J. Membr. Sci. 350, 259–268 (2010)CrossRef
29.
go back to reference Shimekit, B.; Mukhtar, H.; Murugesan, T.: Prediction of the relative permeability of gases in mixed matrix membranes. J. Membr. Sci. 373, 152–159 (2011)CrossRef Shimekit, B.; Mukhtar, H.; Murugesan, T.: Prediction of the relative permeability of gases in mixed matrix membranes. J. Membr. Sci. 373, 152–159 (2011)CrossRef
30.
go back to reference Gheimasi, K.M.; Mohammadi, T.; Bakhtiari, O.: Modification of ideal MMMs permeation prediction models: effects of partial pore blockage and polymer chain regidification. J. Membr. Sci. 427, 399–410 (2013)CrossRef Gheimasi, K.M.; Mohammadi, T.; Bakhtiari, O.: Modification of ideal MMMs permeation prediction models: effects of partial pore blockage and polymer chain regidification. J. Membr. Sci. 427, 399–410 (2013)CrossRef
31.
go back to reference Gonzo, E.E.; Parentis, M.L.; Gohifredi, J.C.: Estimating models for predicting effective permeability of mixed matrix membranes. J. Membr. Sci. 277, 46–54 (2006)CrossRef Gonzo, E.E.; Parentis, M.L.; Gohifredi, J.C.: Estimating models for predicting effective permeability of mixed matrix membranes. J. Membr. Sci. 277, 46–54 (2006)CrossRef
32.
go back to reference Petropoulos, J.H.: A comparative study of approaches applied to the permeability of binary composite polymeric materials. Polym. Sci. Polym. Phys. J. Ed. 23, 1309–1324 (1985)CrossRef Petropoulos, J.H.: A comparative study of approaches applied to the permeability of binary composite polymeric materials. Polym. Sci. Polym. Phys. J. Ed. 23, 1309–1324 (1985)CrossRef
33.
go back to reference Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 24, 636–679 (1935)CrossRef Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 24, 636–679 (1935)CrossRef
34.
go back to reference Aroon, M.A.; Ismail, A.F.; Matsuura, T.; Montazer-Rahmati, M.M.: Performance studies of mixed matrix membranes for gas separation: a review. Sep. J. Purif. Technol. 75, 229–242 (2010)CrossRef Aroon, M.A.; Ismail, A.F.; Matsuura, T.; Montazer-Rahmati, M.M.: Performance studies of mixed matrix membranes for gas separation: a review. Sep. J. Purif. Technol. 75, 229–242 (2010)CrossRef
35.
go back to reference Shariati, A.; Omidkhah, M.R.; Zamani, M.: New permeation models for nanocomposite polymeric membranes filled with nonporous particles. J. Chem. Eng. Res. Design 90, 563–575 (2012)CrossRef Shariati, A.; Omidkhah, M.R.; Zamani, M.: New permeation models for nanocomposite polymeric membranes filled with nonporous particles. J. Chem. Eng. Res. Design 90, 563–575 (2012)CrossRef
36.
go back to reference Higuchi, W.I.; Higuchi, T.: Theoretical analysis of diffusion at movement through heterogeneous barriers. Amer. Pharm. Assoc. Sci. J. 49, 598–606 (1960)CrossRef Higuchi, W.I.; Higuchi, T.: Theoretical analysis of diffusion at movement through heterogeneous barriers. Amer. Pharm. Assoc. Sci. J. 49, 598–606 (1960)CrossRef
37.
go back to reference Nielsen, L.E.: Thermal conductivity of particulate-filled polymers. Appl. Polym. Sci. J. 17, 3819–3820 (1973)CrossRef Nielsen, L.E.: Thermal conductivity of particulate-filled polymers. Appl. Polym. Sci. J. 17, 3819–3820 (1973)CrossRef
38.
go back to reference Gonzo, E.E.: Estimating correlations for the effective thermal conductivity of granular materials. J. Membr. Sci. 427, 399–410 (2002) Gonzo, E.E.: Estimating correlations for the effective thermal conductivity of granular materials. J. Membr. Sci. 427, 399–410 (2002)
39.
go back to reference Chiew, Y.C.; Glandt, E.D.: The effect of structure on the conductivity of a dispersion. Coll. Interface Sci. J. 94, 90–104 (1983)CrossRef Chiew, Y.C.; Glandt, E.D.: The effect of structure on the conductivity of a dispersion. Coll. Interface Sci. J. 94, 90–104 (1983)CrossRef
40.
go back to reference Hashemifard, S.A.; Ismail, A.F.; Matsuura, T.: Prediction of gas permeability in mixed matrix membranes using theoretical models. J. Membr. Sci. 347, 53–61 (2010)CrossRef Hashemifard, S.A.; Ismail, A.F.; Matsuura, T.: Prediction of gas permeability in mixed matrix membranes using theoretical models. J. Membr. Sci. 347, 53–61 (2010)CrossRef
41.
go back to reference Rajinder, P.: Permeation models for mixed matrix membranes. J. Coll. Interface Sci. 317, 191–198 (2008)CrossRef Rajinder, P.: Permeation models for mixed matrix membranes. J. Coll. Interface Sci. 317, 191–198 (2008)CrossRef
42.
go back to reference Rafiq, S.; Man, Z.; Ahmad, F.; Maitra, S.: Silica-polymer nanocomposite membranes for gas separation - a review, part 2. Interceram 60, 8–13 (2011) Rafiq, S.; Man, Z.; Ahmad, F.; Maitra, S.: Silica-polymer nanocomposite membranes for gas separation - a review, part 2. Interceram 60, 8–13 (2011)
43.
go back to reference Maxwell, C.: Treatise on Electricity and Magnetism, Vol. 1. Oxford University Press, London (1973)MATH Maxwell, C.: Treatise on Electricity and Magnetism, Vol. 1. Oxford University Press, London (1973)MATH
44.
go back to reference Maxwell, J.C.: Treatise on Electricity and Magnetism. Clarendon Press, Oxford (1881)MATH Maxwell, J.C.: Treatise on Electricity and Magnetism. Clarendon Press, Oxford (1881)MATH
45.
go back to reference T.T Moore, R. Mahajan, D.Q Vu, W.J Koros, Hybrid membrane materials comprising organic polymers with rigid dispersed phases, AIChE J. 50 (2004) 311–321. T.T Moore, R. Mahajan, D.Q Vu, W.J Koros, Hybrid membrane materials comprising organic polymers with rigid dispersed phases, AIChE J. 50 (2004) 311–321.
46.
go back to reference Banhegyi, G.: Comparison of electrical mixture rules for composites. Colloid. Polym. Sci. 264, 1030–1050 (1986)CrossRef Banhegyi, G.: Comparison of electrical mixture rules for composites. Colloid. Polym. Sci. 264, 1030–1050 (1986)CrossRef
47.
go back to reference Rajinder, P.: On the Lewis-Nielsen model for thermal/electrical conductivity of composites. Compos. A 39, 718–726 (2008)CrossRef Rajinder, P.: On the Lewis-Nielsen model for thermal/electrical conductivity of composites. Compos. A 39, 718–726 (2008)CrossRef
48.
go back to reference Lewis, T.B.; Nielsen, L.E.: Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 14, 1449–1471 (1970)CrossRef Lewis, T.B.; Nielsen, L.E.: Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 14, 1449–1471 (1970)CrossRef
49.
go back to reference Pal, R.: New models for thermal conductivity of particulate composites. J. Reinf. Plast. Compos. 26, 643–651 (2007)CrossRef Pal, R.: New models for thermal conductivity of particulate composites. J. Reinf. Plast. Compos. 26, 643–651 (2007)CrossRef
50.
go back to reference Felske, J.D.: Effective thermal conductivity of composite spheres in a continuous medium with contact resistance. Int. J. Heat Mass Trans. 47, 3453–3461 (2004)MATHCrossRef Felske, J.D.: Effective thermal conductivity of composite spheres in a continuous medium with contact resistance. Int. J. Heat Mass Trans. 47, 3453–3461 (2004)MATHCrossRef
51.
go back to reference Moore, T.T.; Koros, W.J.: Non-ideal effects in organic inorganic materials for gas separation membranes. J. Mol. Struct. 739, 87–98 (2005)CrossRef Moore, T.T.; Koros, W.J.: Non-ideal effects in organic inorganic materials for gas separation membranes. J. Mol. Struct. 739, 87–98 (2005)CrossRef
52.
go back to reference Mahajan, R.; Koros, W.J.: Mixed matrix membrane materials with glassy polymers. Part 1. Polym. Eng. Sci. 42, 1420–1431 (2002)CrossRef Mahajan, R.; Koros, W.J.: Mixed matrix membrane materials with glassy polymers. Part 1. Polym. Eng. Sci. 42, 1420–1431 (2002)CrossRef
53.
go back to reference Bouma, R.H.B.; Checchetti, A.; Chidichimo, G.; Drioli, E.: Permeation through a heterogeneous membrane: the effect of the dispersed phase. J. Membr. Sci. 128, 141–149 (1997)CrossRef Bouma, R.H.B.; Checchetti, A.; Chidichimo, G.; Drioli, E.: Permeation through a heterogeneous membrane: the effect of the dispersed phase. J. Membr. Sci. 128, 141–149 (1997)CrossRef
54.
go back to reference Göktürk, H.S.; Fiske, T.J.; Kalyon, D.M.: Effects of particle shape and size distributions on the electrical and magnetic properties of nickel/polyethylene composites. J. Appl. Polym. Sci. 50, 1891–1901 (1993)CrossRef Göktürk, H.S.; Fiske, T.J.; Kalyon, D.M.: Effects of particle shape and size distributions on the electrical and magnetic properties of nickel/polyethylene composites. J. Appl. Polym. Sci. 50, 1891–1901 (1993)CrossRef
55.
go back to reference Cussler, E.L.: Membranes containing selective flakes. J. Membr. Sci. 52, 275–288 (1990)CrossRef Cussler, E.L.: Membranes containing selective flakes. J. Membr. Sci. 52, 275–288 (1990)CrossRef
56.
go back to reference Sarfraz, M.; Ba-Shammakh, M.: Water-stable ZIF-300/Ultrason® mixed-matrix membranes for selective CO2 capture from humid post combustion flue gas. Chinese J. Chem. EngG. 26, 1012–1021 (2018)CrossRef Sarfraz, M.; Ba-Shammakh, M.: Water-stable ZIF-300/Ultrason® mixed-matrix membranes for selective CO2 capture from humid post combustion flue gas. Chinese J. Chem. EngG. 26, 1012–1021 (2018)CrossRef
57.
go back to reference Ge, L.; Zhu, Z.; Li, F.; Liu, S.; Wang, L.; Tang, X.; Rudolp, V.: Investigation of gas permeability in carbon nanotube (CNT) polymer matrix membranes via modifying CNTs with functional groups/metals and controlling modification location. J. Phys. Chem. C 115, 6661–6670 (2011)CrossRef Ge, L.; Zhu, Z.; Li, F.; Liu, S.; Wang, L.; Tang, X.; Rudolp, V.: Investigation of gas permeability in carbon nanotube (CNT) polymer matrix membranes via modifying CNTs with functional groups/metals and controlling modification location. J. Phys. Chem. C 115, 6661–6670 (2011)CrossRef
58.
go back to reference Goh, K.; Karahan, H.E.; Yang, E.; Bae, T.-H.: Graphene-based membranes for CO2/CH4 separation: key challenges and perspectives. Appl. Sci. 9, 2784 (2019)CrossRef Goh, K.; Karahan, H.E.; Yang, E.; Bae, T.-H.: Graphene-based membranes for CO2/CH4 separation: key challenges and perspectives. Appl. Sci. 9, 2784 (2019)CrossRef
59.
go back to reference Chiou, J.S.; Maeda, Y.; Paul, D.R.: Gas permeation in polyethersulfone. J. Appl. Polym. Sci. 33, 1823–1828 (1987)CrossRef Chiou, J.S.; Maeda, Y.; Paul, D.R.: Gas permeation in polyethersulfone. J. Appl. Polym. Sci. 33, 1823–1828 (1987)CrossRef
60.
go back to reference Yu, M.; Funke, H.H.; Falconer, J.L.; Noble, R.D.: High density, vertically-aligned carbon nanotube membranes. Nano Lett. 9, 225–229 (2009)CrossRef Yu, M.; Funke, H.H.; Falconer, J.L.; Noble, R.D.: High density, vertically-aligned carbon nanotube membranes. Nano Lett. 9, 225–229 (2009)CrossRef
61.
go back to reference Basu, S.; Cano-Odena, A.; Vankelecom, I.F.J.: Asymmetric membrane based on Matrimid® and polysulphone blends for enhanced permeance and stability in binary gas (CO2/CH4) mixture separations. Sep. Purif. Techn. 75, 15–21 (2010)CrossRef Basu, S.; Cano-Odena, A.; Vankelecom, I.F.J.: Asymmetric membrane based on Matrimid® and polysulphone blends for enhanced permeance and stability in binary gas (CO2/CH4) mixture separations. Sep. Purif. Techn. 75, 15–21 (2010)CrossRef
62.
go back to reference Karunakaran, M.; Shevate, R.; Kumar, M.; Peinemann, K.V.: CO2-Selective PEO-PBT (PolyActive)/Graphene oxide composite membranes. Chem. Commun. 51, 14187–14190 (2015)CrossRef Karunakaran, M.; Shevate, R.; Kumar, M.; Peinemann, K.V.: CO2-Selective PEO-PBT (PolyActive)/Graphene oxide composite membranes. Chem. Commun. 51, 14187–14190 (2015)CrossRef
63.
go back to reference Li, X.Q.; Ma, L.; Zhang, H.Y.; Wang, S.F.; Jiang, Z.Y.; Guo, R.L.; Wu, H.; Cao, X.Z.; Yang, J.; Wang, B.Y.: Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. J. Membr. Sci. 479, 1–10 (2015)CrossRef Li, X.Q.; Ma, L.; Zhang, H.Y.; Wang, S.F.; Jiang, Z.Y.; Guo, R.L.; Wu, H.; Cao, X.Z.; Yang, J.; Wang, B.Y.: Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. J. Membr. Sci. 479, 1–10 (2015)CrossRef
64.
go back to reference Kim, H.W.; Yoon, H.W.; Yoon, S.-M.; Yoo, B.M.; Ahn, B.K.; Cho, Y.H.; Shin, H.J.; Yang, H.; Paik, U.; Kwon, S.; Choi, J.Y.; Park, H.B.: Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013)CrossRef Kim, H.W.; Yoon, H.W.; Yoon, S.-M.; Yoo, B.M.; Ahn, B.K.; Cho, Y.H.; Shin, H.J.; Yang, H.; Paik, U.; Kwon, S.; Choi, J.Y.; Park, H.B.: Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013)CrossRef
Metadata
Title
Predicting Gas Permeability through Mixed-matrix Membranes Filled with Nanofillers of Different Shapes
Authors
Muhammad Sarfraz
Aqash Arshad
M. Ba-Shammakh
Publication date
29-07-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 5/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05996-8

Other articles of this Issue 5/2022

Arabian Journal for Science and Engineering 5/2022 Go to the issue

Premium Partners