Skip to main content
Top

2024 | OriginalPaper | Chapter

Prediction of Gas Production Dynamic of Natural Gas Hydrate Reservoirs Based on Neural Network

Authors : Xiao Yu, Shuxia Li

Published in: Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As a clean and efficient resource with large reserves, natural gas hydrate has gained worldwide attention in recent years. Unfortunately, the productivity prediction of NGH reservoirs based on traditional numerical simulation is time-consuming and inefficient. It remains a great challenge to accurately and efficiently predict the productivity of NGH reservoir. In this study, a neural network model for predicting the gas production dynamic of hydrate reservoirs was established by learning the results of numerical simulations based on the geological parameters of hydrate reservoirs in Nankai Through of Japan. The accuracy of the neural network model was tested by comparing the actual production test of the hydrate reservoir in the Nankai Trough and it was employed to further predict the gas production dynamic of the hydrate reservoir. After testing, the alternative model for numerical simulation established using neural network has greatly improved the calculation speed and the accuracy rate exceeds 99.8%. In the first seven days, the average daily gas production of the hydrate reservoir in the Nankai Trough predicted by the neural network model is 21810.06 m3/d. The error between the predicted value and the actual value was less than 10%. Besides, the average daily gas production and cumulative gas production of hydrate reservoirs for one year were predicted to be 13800 m3 and 4.98 × 106 m3 respectively by employing the established neural network model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khurana, M., Yin, Z., Linga, P.: A review of clathrate hydrate nucleation. ACS Sustain. Chem. Eng. 5(12), 11176–11203 (2017)CrossRef Khurana, M., Yin, Z., Linga, P.: A review of clathrate hydrate nucleation. ACS Sustain. Chem. Eng. 5(12), 11176–11203 (2017)CrossRef
2.
go back to reference Chong, Z.R., Yang, S.H.B., Babu, P., et al.: Review of natural gas hydrates as an energy resource: prospects and challenges. Appl. Energy 162, 1633–1652 (2016)CrossRef Chong, Z.R., Yang, S.H.B., Babu, P., et al.: Review of natural gas hydrates as an energy resource: prospects and challenges. Appl. Energy 162, 1633–1652 (2016)CrossRef
3.
go back to reference Sloan, E.D., Jr.: Fundamental principles and applications of natural gas hydrates. Nature 426(6964), 353–359 (2003)CrossRef Sloan, E.D., Jr.: Fundamental principles and applications of natural gas hydrates. Nature 426(6964), 353–359 (2003)CrossRef
4.
go back to reference Kvenvolden, K.A.: Methane hydrate—a major reservoir of carbon in the shallow geosphere? Chem. Geol. 71(1–3), 41–51 (1988)CrossRef Kvenvolden, K.A.: Methane hydrate—a major reservoir of carbon in the shallow geosphere? Chem. Geol. 71(1–3), 41–51 (1988)CrossRef
5.
go back to reference Englezos, P.: Clathrate hydrates. Ind. Eng. Chem. Res. 32(7), 1251–1274 (1993)CrossRef Englezos, P.: Clathrate hydrates. Ind. Eng. Chem. Res. 32(7), 1251–1274 (1993)CrossRef
6.
go back to reference Sun, X., Luo, T., Wang, L., et al.: Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization. Appl. Energy 250, 7–18 (2019)CrossRef Sun, X., Luo, T., Wang, L., et al.: Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization. Appl. Energy 250, 7–18 (2019)CrossRef
7.
go back to reference Cranganu, C.: In-situ thermal stimulation of gas hydrates. J. Petrol. Sci. Eng. 65(1–2), 76–80 (2009)CrossRef Cranganu, C.: In-situ thermal stimulation of gas hydrates. J. Petrol. Sci. Eng. 65(1–2), 76–80 (2009)CrossRef
8.
go back to reference Dong, F., Zang, X., Li, D., et al.: Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection. Energy Fuels 23(3), 1563–1567 (2009)CrossRef Dong, F., Zang, X., Li, D., et al.: Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection. Energy Fuels 23(3), 1563–1567 (2009)CrossRef
9.
go back to reference Sun, Y.H., Zhang, G.B., Carroll, J.J., et al.: Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement. Appl. Energy 229, 625–636 (2018)CrossRef Sun, Y.H., Zhang, G.B., Carroll, J.J., et al.: Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement. Appl. Energy 229, 625–636 (2018)CrossRef
10.
go back to reference Mao, L., Cai, M., Liu, Q., et al.: Parameter optimization for solid fluidization exploitation of natural gas hydrate in South China Sea. Eng. Comput. 39(3), 1051–1079 (2022)CrossRef Mao, L., Cai, M., Liu, Q., et al.: Parameter optimization for solid fluidization exploitation of natural gas hydrate in South China Sea. Eng. Comput. 39(3), 1051–1079 (2022)CrossRef
11.
go back to reference Wang, Y., Feng, J.C., Li, X.S., et al.: Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system. Appl. Energy 226, 916–923 (2018)CrossRef Wang, Y., Feng, J.C., Li, X.S., et al.: Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system. Appl. Energy 226, 916–923 (2018)CrossRef
12.
go back to reference Wang, F., Wang, Z., Zhang, D., et al.: Gas production enhancement by horizontal wells with hydraulic fractures in a natural gas hydrate reservoir: a thermo-hydro-chemical study. Energy Fuels 37, 8258–8271 (2023)CrossRef Wang, F., Wang, Z., Zhang, D., et al.: Gas production enhancement by horizontal wells with hydraulic fractures in a natural gas hydrate reservoir: a thermo-hydro-chemical study. Energy Fuels 37, 8258–8271 (2023)CrossRef
13.
go back to reference Makogon, Y.F., Omelchenko, R.Y.: Commercial gas production from Messoyakha deposit in hydrate conditions. J. Nat. Gas Sci. Eng. 11, 1–6 (2013)CrossRef Makogon, Y.F., Omelchenko, R.Y.: Commercial gas production from Messoyakha deposit in hydrate conditions. J. Nat. Gas Sci. Eng. 11, 1–6 (2013)CrossRef
14.
go back to reference Winters, W.J., Dallimore, S.R., Collett, T.S., et al.: Relation between Gas hydrate and physical properties at the Mallik 2L–38 research well in the Mackenzie delta. Ann. N. Y. Acad. Sci. 912(1), 94–100 (2000)CrossRef Winters, W.J., Dallimore, S.R., Collett, T.S., et al.: Relation between Gas hydrate and physical properties at the Mallik 2L–38 research well in the Mackenzie delta. Ann. N. Y. Acad. Sci. 912(1), 94–100 (2000)CrossRef
15.
go back to reference Zhao, J., Yu, T., Song, Y., et al.: Numerical simulation of gas production from hydrate deposits using a single vertical well by depressurization in the Qilian Mountain permafrost, Qinghai-Tibet Plateau, China. Energy 52, 308–319 (2013)CrossRef Zhao, J., Yu, T., Song, Y., et al.: Numerical simulation of gas production from hydrate deposits using a single vertical well by depressurization in the Qilian Mountain permafrost, Qinghai-Tibet Plateau, China. Energy 52, 308–319 (2013)CrossRef
16.
go back to reference Moridis, G.J., Silpngarmlert, S., Reagan, M.T., et al.: Gas production from a cold, stratigraphically-bounded gas hydrate deposit at the mount elbert gas hydrate stratigraphic test well, Alaska North slope: implications of uncertainties. Mar. Pet. Geol. 28(2), 517–534 (2011)CrossRef Moridis, G.J., Silpngarmlert, S., Reagan, M.T., et al.: Gas production from a cold, stratigraphically-bounded gas hydrate deposit at the mount elbert gas hydrate stratigraphic test well, Alaska North slope: implications of uncertainties. Mar. Pet. Geol. 28(2), 517–534 (2011)CrossRef
17.
go back to reference Chen, L., Feng, Y., Kogawa, T., et al.: Construction and simulation of reservoir scale layered model for production and utilization of methane hydrate: the case of Nankai Trough Japan. Energy 143, 128–140 (2018)CrossRef Chen, L., Feng, Y., Kogawa, T., et al.: Construction and simulation of reservoir scale layered model for production and utilization of methane hydrate: the case of Nankai Trough Japan. Energy 143, 128–140 (2018)CrossRef
18.
go back to reference Li, J., Ye, J., Qin, X., et al.: The first offshore natural gas hydrate production test in South China Sea. China Geol. 1(1), 5–16 (2018)CrossRef Li, J., Ye, J., Qin, X., et al.: The first offshore natural gas hydrate production test in South China Sea. China Geol. 1(1), 5–16 (2018)CrossRef
19.
go back to reference Yamamoto, K., Boswell, R., Collett, T.S., et al.: Review of past gas production attempts from subsurface gas hydrate deposits and necessity of long-term production testing. Energy Fuels 36(10), 5047–5062 (2022)CrossRef Yamamoto, K., Boswell, R., Collett, T.S., et al.: Review of past gas production attempts from subsurface gas hydrate deposits and necessity of long-term production testing. Energy Fuels 36(10), 5047–5062 (2022)CrossRef
20.
go back to reference Makogon, I.F., Makogon, Y.F.: Hydrates of Hydrocarbons, pp. 399–411. Penn Well Publishing Company, Tulsa, Oklahoma (1997) Makogon, I.F., Makogon, Y.F.: Hydrates of Hydrocarbons, pp. 399–411. Penn Well Publishing Company, Tulsa, Oklahoma (1997)
21.
go back to reference Li, S.X., Li, J., Xu, X.H., et al.: Experimental study on influencing factors for hydrate dissociation in a hot brine injection process. J. China Univ. Petrol. 38(2), 99–102 (2014) Li, S.X., Li, J., Xu, X.H., et al.: Experimental study on influencing factors for hydrate dissociation in a hot brine injection process. J. China Univ. Petrol. 38(2), 99–102 (2014)
22.
go back to reference Chen, L., Feng, Y., Okajima, J., et al.: Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea. J. Nat. Gas Sci. Eng. 53, 55–66 (2018)CrossRef Chen, L., Feng, Y., Okajima, J., et al.: Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea. J. Nat. Gas Sci. Eng. 53, 55–66 (2018)CrossRef
23.
go back to reference Wei, R., Xia, Y., Wang, Z., et al.: Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea. Appl. Energy 320, 119235 (2022)CrossRef Wei, R., Xia, Y., Wang, Z., et al.: Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea. Appl. Energy 320, 119235 (2022)CrossRef
24.
go back to reference Li, S., Ding, S., Wu, D., et al.: Analysis of stratum subsidence induced by depressurization at an offshore hydrate-bearing sediment. Energy Fuels 35(2), 1381–1388 (2021)CrossRef Li, S., Ding, S., Wu, D., et al.: Analysis of stratum subsidence induced by depressurization at an offshore hydrate-bearing sediment. Energy Fuels 35(2), 1381–1388 (2021)CrossRef
25.
go back to reference Luo, J., Ji, Y., Lu, W.: Comparison of surrogate models based on different sampling methods for groundwater remediation. J. Water Resour. Plan. Manag. 145(5), 04019015 (2019)CrossRef Luo, J., Ji, Y., Lu, W.: Comparison of surrogate models based on different sampling methods for groundwater remediation. J. Water Resour. Plan. Manag. 145(5), 04019015 (2019)CrossRef
26.
go back to reference Huang, L., Su, Z., Wu, N., et al.: Analysis on geologic conditions affecting the performance of gas production from hydrate deposits. Mar. Pet. Geol. 77, 19–29 (2016)CrossRef Huang, L., Su, Z., Wu, N., et al.: Analysis on geologic conditions affecting the performance of gas production from hydrate deposits. Mar. Pet. Geol. 77, 19–29 (2016)CrossRef
Metadata
Title
Prediction of Gas Production Dynamic of Natural Gas Hydrate Reservoirs Based on Neural Network
Authors
Xiao Yu
Shuxia Li
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1309-7_48