Skip to main content

2024 | OriginalPaper | Buchkapitel

Prediction of Gas Production Dynamic of Natural Gas Hydrate Reservoirs Based on Neural Network

verfasst von : Xiao Yu, Shuxia Li

Erschienen in: Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a clean and efficient resource with large reserves, natural gas hydrate has gained worldwide attention in recent years. Unfortunately, the productivity prediction of NGH reservoirs based on traditional numerical simulation is time-consuming and inefficient. It remains a great challenge to accurately and efficiently predict the productivity of NGH reservoir. In this study, a neural network model for predicting the gas production dynamic of hydrate reservoirs was established by learning the results of numerical simulations based on the geological parameters of hydrate reservoirs in Nankai Through of Japan. The accuracy of the neural network model was tested by comparing the actual production test of the hydrate reservoir in the Nankai Trough and it was employed to further predict the gas production dynamic of the hydrate reservoir. After testing, the alternative model for numerical simulation established using neural network has greatly improved the calculation speed and the accuracy rate exceeds 99.8%. In the first seven days, the average daily gas production of the hydrate reservoir in the Nankai Trough predicted by the neural network model is 21810.06 m3/d. The error between the predicted value and the actual value was less than 10%. Besides, the average daily gas production and cumulative gas production of hydrate reservoirs for one year were predicted to be 13800 m3 and 4.98 × 106 m3 respectively by employing the established neural network model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khurana, M., Yin, Z., Linga, P.: A review of clathrate hydrate nucleation. ACS Sustain. Chem. Eng. 5(12), 11176–11203 (2017)CrossRef Khurana, M., Yin, Z., Linga, P.: A review of clathrate hydrate nucleation. ACS Sustain. Chem. Eng. 5(12), 11176–11203 (2017)CrossRef
2.
Zurück zum Zitat Chong, Z.R., Yang, S.H.B., Babu, P., et al.: Review of natural gas hydrates as an energy resource: prospects and challenges. Appl. Energy 162, 1633–1652 (2016)CrossRef Chong, Z.R., Yang, S.H.B., Babu, P., et al.: Review of natural gas hydrates as an energy resource: prospects and challenges. Appl. Energy 162, 1633–1652 (2016)CrossRef
3.
Zurück zum Zitat Sloan, E.D., Jr.: Fundamental principles and applications of natural gas hydrates. Nature 426(6964), 353–359 (2003)CrossRef Sloan, E.D., Jr.: Fundamental principles and applications of natural gas hydrates. Nature 426(6964), 353–359 (2003)CrossRef
4.
Zurück zum Zitat Kvenvolden, K.A.: Methane hydrate—a major reservoir of carbon in the shallow geosphere? Chem. Geol. 71(1–3), 41–51 (1988)CrossRef Kvenvolden, K.A.: Methane hydrate—a major reservoir of carbon in the shallow geosphere? Chem. Geol. 71(1–3), 41–51 (1988)CrossRef
5.
Zurück zum Zitat Englezos, P.: Clathrate hydrates. Ind. Eng. Chem. Res. 32(7), 1251–1274 (1993)CrossRef Englezos, P.: Clathrate hydrates. Ind. Eng. Chem. Res. 32(7), 1251–1274 (1993)CrossRef
6.
Zurück zum Zitat Sun, X., Luo, T., Wang, L., et al.: Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization. Appl. Energy 250, 7–18 (2019)CrossRef Sun, X., Luo, T., Wang, L., et al.: Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization. Appl. Energy 250, 7–18 (2019)CrossRef
7.
Zurück zum Zitat Cranganu, C.: In-situ thermal stimulation of gas hydrates. J. Petrol. Sci. Eng. 65(1–2), 76–80 (2009)CrossRef Cranganu, C.: In-situ thermal stimulation of gas hydrates. J. Petrol. Sci. Eng. 65(1–2), 76–80 (2009)CrossRef
8.
Zurück zum Zitat Dong, F., Zang, X., Li, D., et al.: Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection. Energy Fuels 23(3), 1563–1567 (2009)CrossRef Dong, F., Zang, X., Li, D., et al.: Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection. Energy Fuels 23(3), 1563–1567 (2009)CrossRef
9.
Zurück zum Zitat Sun, Y.H., Zhang, G.B., Carroll, J.J., et al.: Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement. Appl. Energy 229, 625–636 (2018)CrossRef Sun, Y.H., Zhang, G.B., Carroll, J.J., et al.: Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement. Appl. Energy 229, 625–636 (2018)CrossRef
10.
Zurück zum Zitat Mao, L., Cai, M., Liu, Q., et al.: Parameter optimization for solid fluidization exploitation of natural gas hydrate in South China Sea. Eng. Comput. 39(3), 1051–1079 (2022)CrossRef Mao, L., Cai, M., Liu, Q., et al.: Parameter optimization for solid fluidization exploitation of natural gas hydrate in South China Sea. Eng. Comput. 39(3), 1051–1079 (2022)CrossRef
11.
Zurück zum Zitat Wang, Y., Feng, J.C., Li, X.S., et al.: Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system. Appl. Energy 226, 916–923 (2018)CrossRef Wang, Y., Feng, J.C., Li, X.S., et al.: Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system. Appl. Energy 226, 916–923 (2018)CrossRef
12.
Zurück zum Zitat Wang, F., Wang, Z., Zhang, D., et al.: Gas production enhancement by horizontal wells with hydraulic fractures in a natural gas hydrate reservoir: a thermo-hydro-chemical study. Energy Fuels 37, 8258–8271 (2023)CrossRef Wang, F., Wang, Z., Zhang, D., et al.: Gas production enhancement by horizontal wells with hydraulic fractures in a natural gas hydrate reservoir: a thermo-hydro-chemical study. Energy Fuels 37, 8258–8271 (2023)CrossRef
13.
Zurück zum Zitat Makogon, Y.F., Omelchenko, R.Y.: Commercial gas production from Messoyakha deposit in hydrate conditions. J. Nat. Gas Sci. Eng. 11, 1–6 (2013)CrossRef Makogon, Y.F., Omelchenko, R.Y.: Commercial gas production from Messoyakha deposit in hydrate conditions. J. Nat. Gas Sci. Eng. 11, 1–6 (2013)CrossRef
14.
Zurück zum Zitat Winters, W.J., Dallimore, S.R., Collett, T.S., et al.: Relation between Gas hydrate and physical properties at the Mallik 2L–38 research well in the Mackenzie delta. Ann. N. Y. Acad. Sci. 912(1), 94–100 (2000)CrossRef Winters, W.J., Dallimore, S.R., Collett, T.S., et al.: Relation between Gas hydrate and physical properties at the Mallik 2L–38 research well in the Mackenzie delta. Ann. N. Y. Acad. Sci. 912(1), 94–100 (2000)CrossRef
15.
Zurück zum Zitat Zhao, J., Yu, T., Song, Y., et al.: Numerical simulation of gas production from hydrate deposits using a single vertical well by depressurization in the Qilian Mountain permafrost, Qinghai-Tibet Plateau, China. Energy 52, 308–319 (2013)CrossRef Zhao, J., Yu, T., Song, Y., et al.: Numerical simulation of gas production from hydrate deposits using a single vertical well by depressurization in the Qilian Mountain permafrost, Qinghai-Tibet Plateau, China. Energy 52, 308–319 (2013)CrossRef
16.
Zurück zum Zitat Moridis, G.J., Silpngarmlert, S., Reagan, M.T., et al.: Gas production from a cold, stratigraphically-bounded gas hydrate deposit at the mount elbert gas hydrate stratigraphic test well, Alaska North slope: implications of uncertainties. Mar. Pet. Geol. 28(2), 517–534 (2011)CrossRef Moridis, G.J., Silpngarmlert, S., Reagan, M.T., et al.: Gas production from a cold, stratigraphically-bounded gas hydrate deposit at the mount elbert gas hydrate stratigraphic test well, Alaska North slope: implications of uncertainties. Mar. Pet. Geol. 28(2), 517–534 (2011)CrossRef
17.
Zurück zum Zitat Chen, L., Feng, Y., Kogawa, T., et al.: Construction and simulation of reservoir scale layered model for production and utilization of methane hydrate: the case of Nankai Trough Japan. Energy 143, 128–140 (2018)CrossRef Chen, L., Feng, Y., Kogawa, T., et al.: Construction and simulation of reservoir scale layered model for production and utilization of methane hydrate: the case of Nankai Trough Japan. Energy 143, 128–140 (2018)CrossRef
18.
Zurück zum Zitat Li, J., Ye, J., Qin, X., et al.: The first offshore natural gas hydrate production test in South China Sea. China Geol. 1(1), 5–16 (2018)CrossRef Li, J., Ye, J., Qin, X., et al.: The first offshore natural gas hydrate production test in South China Sea. China Geol. 1(1), 5–16 (2018)CrossRef
19.
Zurück zum Zitat Yamamoto, K., Boswell, R., Collett, T.S., et al.: Review of past gas production attempts from subsurface gas hydrate deposits and necessity of long-term production testing. Energy Fuels 36(10), 5047–5062 (2022)CrossRef Yamamoto, K., Boswell, R., Collett, T.S., et al.: Review of past gas production attempts from subsurface gas hydrate deposits and necessity of long-term production testing. Energy Fuels 36(10), 5047–5062 (2022)CrossRef
20.
Zurück zum Zitat Makogon, I.F., Makogon, Y.F.: Hydrates of Hydrocarbons, pp. 399–411. Penn Well Publishing Company, Tulsa, Oklahoma (1997) Makogon, I.F., Makogon, Y.F.: Hydrates of Hydrocarbons, pp. 399–411. Penn Well Publishing Company, Tulsa, Oklahoma (1997)
21.
Zurück zum Zitat Li, S.X., Li, J., Xu, X.H., et al.: Experimental study on influencing factors for hydrate dissociation in a hot brine injection process. J. China Univ. Petrol. 38(2), 99–102 (2014) Li, S.X., Li, J., Xu, X.H., et al.: Experimental study on influencing factors for hydrate dissociation in a hot brine injection process. J. China Univ. Petrol. 38(2), 99–102 (2014)
22.
Zurück zum Zitat Chen, L., Feng, Y., Okajima, J., et al.: Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea. J. Nat. Gas Sci. Eng. 53, 55–66 (2018)CrossRef Chen, L., Feng, Y., Okajima, J., et al.: Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea. J. Nat. Gas Sci. Eng. 53, 55–66 (2018)CrossRef
23.
Zurück zum Zitat Wei, R., Xia, Y., Wang, Z., et al.: Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea. Appl. Energy 320, 119235 (2022)CrossRef Wei, R., Xia, Y., Wang, Z., et al.: Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea. Appl. Energy 320, 119235 (2022)CrossRef
24.
Zurück zum Zitat Li, S., Ding, S., Wu, D., et al.: Analysis of stratum subsidence induced by depressurization at an offshore hydrate-bearing sediment. Energy Fuels 35(2), 1381–1388 (2021)CrossRef Li, S., Ding, S., Wu, D., et al.: Analysis of stratum subsidence induced by depressurization at an offshore hydrate-bearing sediment. Energy Fuels 35(2), 1381–1388 (2021)CrossRef
25.
Zurück zum Zitat Luo, J., Ji, Y., Lu, W.: Comparison of surrogate models based on different sampling methods for groundwater remediation. J. Water Resour. Plan. Manag. 145(5), 04019015 (2019)CrossRef Luo, J., Ji, Y., Lu, W.: Comparison of surrogate models based on different sampling methods for groundwater remediation. J. Water Resour. Plan. Manag. 145(5), 04019015 (2019)CrossRef
26.
Zurück zum Zitat Huang, L., Su, Z., Wu, N., et al.: Analysis on geologic conditions affecting the performance of gas production from hydrate deposits. Mar. Pet. Geol. 77, 19–29 (2016)CrossRef Huang, L., Su, Z., Wu, N., et al.: Analysis on geologic conditions affecting the performance of gas production from hydrate deposits. Mar. Pet. Geol. 77, 19–29 (2016)CrossRef
Metadaten
Titel
Prediction of Gas Production Dynamic of Natural Gas Hydrate Reservoirs Based on Neural Network
verfasst von
Xiao Yu
Shuxia Li
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1309-7_48