Skip to main content
Top
Published in: Acta Mechanica 8/2019

10-05-2019 | Original Paper

Prediction of interface stiffness of single-walled carbon nanotube-reinforced polymer composites by shear-lag model

Authors: Yan-Gao Hu, Y. F. Li, J. Han, C. P. Hu, Zh. h. Chen, S. T. Gu

Published in: Acta Mechanica | Issue 8/2019

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Interfacial stress transfer of single-walled carbon nanotube-reinforced polymer composites subjected to uniaxial tension was investigated by a newly developed shear-lag model integrated with a spring layer model. A linear relationship between the tangential relative displacement and the interfacial shear stress was assumed for the interface which is determined by van der Waals forces. The interface stiffness parameter was determined through comparing the stress distribution of the shear-lag model with multiscale simulation results. The effect of the interface stiffness and the nanotube’s aspect ratios on the distribution of stress in CNT-reinforced composites was studied.
Literature
1.
go back to reference Thostenson, E.T., Ren, Z.F., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)CrossRef Thostenson, E.T., Ren, Z.F., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)CrossRef
2.
go back to reference Maruyama, B., Alam, H.: Carbon nanotubes and nanofibers in composite materials. Sampe J. 38(3), 59–70 (2002) Maruyama, B., Alam, H.: Carbon nanotubes and nanofibers in composite materials. Sampe J. 38(3), 59–70 (2002)
3.
go back to reference Ajayan, P.M., Schadler, L.S., Giannaris, C., Rubio, A.: Single-walled carbon nanotube–polymer composites: strength and weakness. Adv. Mater. 12(10), 750–753 (2000)CrossRef Ajayan, P.M., Schadler, L.S., Giannaris, C., Rubio, A.: Single-walled carbon nanotube–polymer composites: strength and weakness. Adv. Mater. 12(10), 750–753 (2000)CrossRef
4.
go back to reference Schadler, L.S., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73(26), 3842–3844 (1998)CrossRef Schadler, L.S., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73(26), 3842–3844 (1998)CrossRef
5.
go back to reference Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites. Appl. Phys. Lett. 76(20), 2868–2870 (2000)CrossRef Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites. Appl. Phys. Lett. 76(20), 2868–2870 (2000)CrossRef
6.
go back to reference Chang, B.H., Liu, Z.Q., Sun, L.F., Tang, D.S., Zhou, W.Y., Wang, G., Qian, L.X., Xie, S.S., Fen, J.H., Wan, M.X.: Conductivity and magnetic susceptibility of nanotube/polypyrrole nanocomposites. J. Low. Temp. Phys. 119(1), 41–48 (2000)CrossRef Chang, B.H., Liu, Z.Q., Sun, L.F., Tang, D.S., Zhou, W.Y., Wang, G., Qian, L.X., Xie, S.S., Fen, J.H., Wan, M.X.: Conductivity and magnetic susceptibility of nanotube/polypyrrole nanocomposites. J. Low. Temp. Phys. 119(1), 41–48 (2000)CrossRef
7.
go back to reference Barber, A.H., Cohen, S.R., Wagner, H.D.: Measurement of carbon nanotube–polymer interfacial strength. Appl. Phys. Lett. 82(23), 4140–4142 (2003)CrossRef Barber, A.H., Cohen, S.R., Wagner, H.D.: Measurement of carbon nanotube–polymer interfacial strength. Appl. Phys. Lett. 82(23), 4140–4142 (2003)CrossRef
8.
go back to reference Chen, X.M., Zheng, M., Park, C., Ke, C.H.: Direct measurements of the mechanical strength of carbon nanotube–poly(methyl methacrylate) interfaces. Small 9(19), 3345–3351 (2013) Chen, X.M., Zheng, M., Park, C., Ke, C.H.: Direct measurements of the mechanical strength of carbon nanotube–poly(methyl methacrylate) interfaces. Small 9(19), 3345–3351 (2013)
9.
go back to reference Lordi, V., Yao, N.: Molecular mechanics of binding in carbon–nanotube–polymer composites. J. Mater. Res. 15(12), 2770–2779 (2000)CrossRef Lordi, V., Yao, N.: Molecular mechanics of binding in carbon–nanotube–polymer composites. J. Mater. Res. 15(12), 2770–2779 (2000)CrossRef
10.
go back to reference Liao, K., Li, S.: Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl. Phys. Lett. 79(25), 4225–4227 (2001)CrossRef Liao, K., Li, S.: Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl. Phys. Lett. 79(25), 4225–4227 (2001)CrossRef
11.
go back to reference Subramanian, N., Rai, A., Chattopadhyay, A.: Atomistically derived cohesive behavior of interphases in carbon fiber reinforced CNT nanocomposites. Carbon 117, 55–64 (2017)CrossRef Subramanian, N., Rai, A., Chattopadhyay, A.: Atomistically derived cohesive behavior of interphases in carbon fiber reinforced CNT nanocomposites. Carbon 117, 55–64 (2017)CrossRef
12.
go back to reference Frankland, S.J.V., Harik, V.M.: Analysis of carbon nanotube pull-out from a polymer matrix. Surf. Sci. 525(1), L103–L108 (2003)CrossRef Frankland, S.J.V., Harik, V.M.: Analysis of carbon nanotube pull-out from a polymer matrix. Surf. Sci. 525(1), L103–L108 (2003)CrossRef
13.
go back to reference Frankland, S.J.V., Caglar, A., Brenner, D.W., Griebel, M.: Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube–polymer interfaces. J. Phys. Chem. B 106(12), 3046–3048 (2002)CrossRef Frankland, S.J.V., Caglar, A., Brenner, D.W., Griebel, M.: Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube–polymer interfaces. J. Phys. Chem. B 106(12), 3046–3048 (2002)CrossRef
14.
go back to reference Frankland, S.J.V., Harik, V.M., Odegard, G.M., Brenner, D.W., Gates, T.S.: The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation. Compos. Sci. Technol. 63(11), 1655–1661 (2003)CrossRef Frankland, S.J.V., Harik, V.M., Odegard, G.M., Brenner, D.W., Gates, T.S.: The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation. Compos. Sci. Technol. 63(11), 1655–1661 (2003)CrossRef
15.
go back to reference Gou, J.H., Minaie, B., Wang, B., Liang, Z.Y., Zhang, C.: Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput. Mater. Sci. 31(3–4), 225–236 (2004)CrossRef Gou, J.H., Minaie, B., Wang, B., Liang, Z.Y., Zhang, C.: Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput. Mater. Sci. 31(3–4), 225–236 (2004)CrossRef
16.
go back to reference Xiong, Q.L., Meguid, S.A.: Atomistic investigation of the interfacial mechanical characteristics of carbon nanotube reinforced epoxy composite. Eur. Polym. J. 69, 1–15 (2015)CrossRef Xiong, Q.L., Meguid, S.A.: Atomistic investigation of the interfacial mechanical characteristics of carbon nanotube reinforced epoxy composite. Eur. Polym. J. 69, 1–15 (2015)CrossRef
17.
go back to reference Wagner, H.D.: Nanotube-polymer adhesion: a mechanics approach. Chem. Phys. Lett. 361(1–2), 57–61 (2002)CrossRef Wagner, H.D.: Nanotube-polymer adhesion: a mechanics approach. Chem. Phys. Lett. 361(1–2), 57–61 (2002)CrossRef
18.
go back to reference Gao, X.L., Li, K.: A shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids. Struct. 42(5–6), 1649–1667 (2005)CrossRefMATH Gao, X.L., Li, K.: A shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids. Struct. 42(5–6), 1649–1667 (2005)CrossRefMATH
19.
go back to reference Tsai, J.L., Lu, T.C.: Investigating the load transfer efficiency in carbon nanotubes reinforced nanocomposites. Compos. Struct. 90(2), 172–179 (2009)CrossRef Tsai, J.L., Lu, T.C.: Investigating the load transfer efficiency in carbon nanotubes reinforced nanocomposites. Compos. Struct. 90(2), 172–179 (2009)CrossRef
20.
go back to reference Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading. Compos. Struct. 93(9), 2250–2259 (2011)CrossRef Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading. Compos. Struct. 93(9), 2250–2259 (2011)CrossRef
21.
go back to reference Li, C.Y., Chou, T.W.: Multiscale modeling of carbon nanotube reinforced polymer composites. J. Nanosci. Nanotechnol. 3(5), 423–430 (2003)CrossRef Li, C.Y., Chou, T.W.: Multiscale modeling of carbon nanotube reinforced polymer composites. J. Nanosci. Nanotechnol. 3(5), 423–430 (2003)CrossRef
22.
go back to reference Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015)CrossRef Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015)CrossRef
23.
go back to reference Thostenson, E.T., Chou, T.W.: On the elastic properties of carbon nanotube-based composites: modelling and characterization. J. Phys. D. Appl. Phys. 36(5), 573–582 (2003)CrossRef Thostenson, E.T., Chou, T.W.: On the elastic properties of carbon nanotube-based composites: modelling and characterization. J. Phys. D. Appl. Phys. 36(5), 573–582 (2003)CrossRef
24.
go back to reference Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3(3), 72 (1952)CrossRef Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3(3), 72 (1952)CrossRef
25.
go back to reference McCartney, L.N.: Analytical models of stress transfer in unidirectional composites and cross-ply laminates, and their application to the prediction of matrix/transverse cracking. In: Reddy, J.N., Reifsnider, K.L. (eds.) Local Mechanics Concepts for Composite Material Systems, pp. 251–282. Springer, Berlin (1992)CrossRef McCartney, L.N.: Analytical models of stress transfer in unidirectional composites and cross-ply laminates, and their application to the prediction of matrix/transverse cracking. In: Reddy, J.N., Reifsnider, K.L. (eds.) Local Mechanics Concepts for Composite Material Systems, pp. 251–282. Springer, Berlin (1992)CrossRef
26.
go back to reference Nairn, J.A.: On the use of shear-lag methods for analysis of stress transfer unidirectional composites. Mech. Mater. 26(2), 63–80 (1997)CrossRef Nairn, J.A.: On the use of shear-lag methods for analysis of stress transfer unidirectional composites. Mech. Mater. 26(2), 63–80 (1997)CrossRef
27.
go back to reference Haque, A., Ramasetty, A.: Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos. Struct. 71(1), 68–77 (2005)CrossRef Haque, A., Ramasetty, A.: Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos. Struct. 71(1), 68–77 (2005)CrossRef
28.
go back to reference Ang, K.K., Ahmed, K.S.: An improved shear-lag model for carbon nanotube reinforced polymer composites. Compos. Part. B Eng. 50, 7–14 (2013)CrossRef Ang, K.K., Ahmed, K.S.: An improved shear-lag model for carbon nanotube reinforced polymer composites. Compos. Part. B Eng. 50, 7–14 (2013)CrossRef
29.
go back to reference Guo, G.D., Zhu, Y.: Cohesive-shear-lag modeling of interfacial stress transfer between a monolayer graphene and a polymer substrate. J. Appl. Mech. 82(3), 031005 (2015)CrossRef Guo, G.D., Zhu, Y.: Cohesive-shear-lag modeling of interfacial stress transfer between a monolayer graphene and a polymer substrate. J. Appl. Mech. 82(3), 031005 (2015)CrossRef
30.
go back to reference Ansari, R., Rouhi, S., Momen, A.: Predicting mechanical properties and buckling behavior of single-walled silicon carbide nanocones using a finite element method. Appl. Phys. A 119(3), 1039–1045 (2015)CrossRef Ansari, R., Rouhi, S., Momen, A.: Predicting mechanical properties and buckling behavior of single-walled silicon carbide nanocones using a finite element method. Appl. Phys. A 119(3), 1039–1045 (2015)CrossRef
31.
Metadata
Title
Prediction of interface stiffness of single-walled carbon nanotube-reinforced polymer composites by shear-lag model
Authors
Yan-Gao Hu
Y. F. Li
J. Han
C. P. Hu
Zh. h. Chen
S. T. Gu
Publication date
10-05-2019
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 8/2019
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02426-7

Other articles of this Issue 8/2019

Acta Mechanica 8/2019 Go to the issue

Premium Partners