Skip to main content
Top

15-04-2024 | Original Paper

Prediction of liquid circulation flow rate in RH degasser: improvement of decarburization at low atmospheric pressure

Authors: Gu-jun Chen, Sheng-ping He

Published in: Journal of Iron and Steel Research International

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The two-fluid model coupled with population balance model was used for simulating the gas–liquid flow in the Ruhrstahl–Heraeus (RH) degasser. The predicted circulation flow rate was compared with that measured from a water model experiment to validate the mathematical model. Then, influence of snorkel immersion depth on liquid circulation flow rate was numerically investigated under an atmospheric pressure of 101 and 84 kPa, respectively. Predicted result indicates that the circulation flow rate of the RH degasser in the high-altitude area was severely reduced because of the decrease in atmospheric pressure. However, increasing the snorkel immersion depth from 0.5 to 0.7 m can compensate for the decrease in atmospheric pressure. Industrial test result indicates that decarburization rate is significantly enhanced by increasing the snorkel immersion depth. Through optimization, the percentage of heats with a final carbon content less than 0.002 wt.% is significantly increased from 22.0% to 96.4%.
Literature
[1]
go back to reference G. Chen, J. Yang, L. Li, M. Zhang, S. He, J. CO2 Util. 50 (2021) 101586. G. Chen, J. Yang, L. Li, M. Zhang, S. He, J. CO2 Util. 50 (2021) 101586.
[2]
go back to reference Y. Huang, G.G. Cheng, Q. Wang, S.J. Li, W.X. Dai, Ironmak. Steelmak. 47 (2020) 655–664.CrossRef Y. Huang, G.G. Cheng, Q. Wang, S.J. Li, W.X. Dai, Ironmak. Steelmak. 47 (2020) 655–664.CrossRef
[3]
go back to reference M.A. van Ende, Y.M. Kim, M.K. Cho, J. Choi, I.H. Jung, Metall. Mater. Trans. B 42 (2011) 477–489.CrossRef M.A. van Ende, Y.M. Kim, M.K. Cho, J. Choi, I.H. Jung, Metall. Mater. Trans. B 42 (2011) 477–489.CrossRef
[4]
[6]
go back to reference S. Chen, H. Lei, H. Hou, C. Ding, H. Zhang, Y. Zhao, J. Mater. Res. Technol. 15 (2021) 5141–5150.CrossRef S. Chen, H. Lei, H. Hou, C. Ding, H. Zhang, Y. Zhao, J. Mater. Res. Technol. 15 (2021) 5141–5150.CrossRef
[7]
go back to reference H. Ling, F. Li, L. Zhang, A.N. Conejo, Metall. Mater. Trans. B 47 (2016) 1950–1961.CrossRef H. Ling, F. Li, L. Zhang, A.N. Conejo, Metall. Mater. Trans. B 47 (2016) 1950–1961.CrossRef
[8]
[9]
[10]
go back to reference Q. Cao, D. Chu, J. Zhang, H. Bi, Y. Xuan, P. Li, JOM 73 (2021) 2660–2671.CrossRef Q. Cao, D. Chu, J. Zhang, H. Bi, Y. Xuan, P. Li, JOM 73 (2021) 2660–2671.CrossRef
[11]
go back to reference J. Dong, C. Feng, R. Zhu, G. Wei, J. Jiang, S. Chen, Metall. Mater. Trans. B 52 (2021) 2127–2138.CrossRef J. Dong, C. Feng, R. Zhu, G. Wei, J. Jiang, S. Chen, Metall. Mater. Trans. B 52 (2021) 2127–2138.CrossRef
[12]
go back to reference C. Liu, L. Zhang, Y. Sun, W. Yang, Metall. Mater. Trans. B 53 (2022) 670–681.CrossRef C. Liu, L. Zhang, Y. Sun, W. Yang, Metall. Mater. Trans. B 53 (2022) 670–681.CrossRef
[13]
go back to reference K. Peng, C. Liu, L. Zhang, Y. Sun, Metall. Mater. Trans. B 53 (2022) 2004–2017.CrossRef K. Peng, C. Liu, L. Zhang, Y. Sun, Metall. Mater. Trans. B 53 (2022) 2004–2017.CrossRef
[14]
go back to reference K. Peng, J. Wang, Q. Li, C. Liu, L. Zhang, Metall. Mater. Trans. B 54 (2023) 928–943.CrossRef K. Peng, J. Wang, Q. Li, C. Liu, L. Zhang, Metall. Mater. Trans. B 54 (2023) 928–943.CrossRef
[15]
[16]
go back to reference B. Zhu, Q. Liu, M. Kong, J. Yang, D. Li, K. Chattopadhyay, Metall. Mater. Trans. B 48 (2017) 2620–2630.CrossRef B. Zhu, Q. Liu, M. Kong, J. Yang, D. Li, K. Chattopadhyay, Metall. Mater. Trans. B 48 (2017) 2620–2630.CrossRef
[17]
go back to reference J.J.M. Peixoto, W.V. Gabriel, T.A. Santos Oliveira, C.A. Silva, I.A. Silva, V. Seshadri, Metall. Mater. Trans. B 49 (2018) 2421–2434.CrossRef J.J.M. Peixoto, W.V. Gabriel, T.A. Santos Oliveira, C.A. Silva, I.A. Silva, V. Seshadri, Metall. Mater. Trans. B 49 (2018) 2421–2434.CrossRef
[18]
go back to reference S.F. Chen, H. Lei, M. Wang, B. Yang, L.J. Dai, Y. Zhao, Vacuum 167 (2019) 255–262.CrossRef S.F. Chen, H. Lei, M. Wang, B. Yang, L.J. Dai, Y. Zhao, Vacuum 167 (2019) 255–262.CrossRef
[19]
[21]
[23]
go back to reference T. Kuwabara, K. Umezawa, K. Mori, H. Watanabe, ISIJ Int. 28 (1988) 305–314.CrossRef T. Kuwabara, K. Umezawa, K. Mori, H. Watanabe, ISIJ Int. 28 (1988) 305–314.CrossRef
[24]
go back to reference M. Zhu, Y. Wu, C. Du, Z. Huang, J. Iron Steel Res. Int. 12 (2005) No. 2, 20–24. M. Zhu, Y. Wu, C. Du, Z. Huang, J. Iron Steel Res. Int. 12 (2005) No. 2, 20–24.
[25]
go back to reference J. Zhang, L. Liu, X. Zhao, S. Lei, Q. Dong, ISIJ Int. 54 (2014) 1560–1569.CrossRef J. Zhang, L. Liu, X. Zhao, S. Lei, Q. Dong, ISIJ Int. 54 (2014) 1560–1569.CrossRef
[26]
[27]
[28]
go back to reference C.W. Li, G.G. Cheng, X.H. Wang, G.S. Zhu, A.M. Cui, J. Iron Steel Res. Int. 19 (2012) No. 5, 23–28.CrossRef C.W. Li, G.G. Cheng, X.H. Wang, G.S. Zhu, A.M. Cui, J. Iron Steel Res. Int. 19 (2012) No. 5, 23–28.CrossRef
[29]
go back to reference Y.H. Li, Y.P. Bao, M. Wang, R. Wang, D.C. Tang, Ironmak. Steelmak. 42 (2015) 366–372.CrossRef Y.H. Li, Y.P. Bao, M. Wang, R. Wang, D.C. Tang, Ironmak. Steelmak. 42 (2015) 366–372.CrossRef
[30]
go back to reference V. Seshadri, C.A. da Silva, I.A. da Silva, G.A. Vargas, P.S.B. Lascosqui, Ironmak. Steelmak. 33 (2006) 34–38.CrossRef V. Seshadri, C.A. da Silva, I.A. da Silva, G.A. Vargas, P.S.B. Lascosqui, Ironmak. Steelmak. 33 (2006) 34–38.CrossRef
[31]
go back to reference D.Q. Geng, J.X. Zheng, K. Wang, P. Wang, R.Q. Liang, H.T. Liu, H. Lei, J.C. He, Metall. Mater. Trans. B 46 (2015) 1484–1493.CrossRef D.Q. Geng, J.X. Zheng, K. Wang, P. Wang, R.Q. Liang, H.T. Liu, H. Lei, J.C. He, Metall. Mater. Trans. B 46 (2015) 1484–1493.CrossRef
[33]
[34]
[35]
[38]
go back to reference L. Schiller, Z. Naumann, Zeitschrift des Vereins Deutscher Ingenieure 77 (1935) 318–320. L. Schiller, Z. Naumann, Zeitschrift des Vereins Deutscher Ingenieure 77 (1935) 318–320.
[39]
go back to reference O. Simonin, P. Viollet, Modeling of turbulent two-phase jets loaded with discrete particles. Phenomena in multiphase flows, Hemisphere Publ. Corporation, London, UK, 1990. O. Simonin, P. Viollet, Modeling of turbulent two-phase jets loaded with discrete particles. Phenomena in multiphase flows, Hemisphere Publ. Corporation, London, UK, 1990.
[40]
[41]
go back to reference H. Luo, Coalescence, breakup and liquid circulation in bubble column reactors, The Norwegian Institute of Technology, Trondheim, Norway, 1993. H. Luo, Coalescence, breakup and liquid circulation in bubble column reactors, The Norwegian Institute of Technology, Trondheim, Norway, 1993.
[43]
Metadata
Title
Prediction of liquid circulation flow rate in RH degasser: improvement of decarburization at low atmospheric pressure
Authors
Gu-jun Chen
Sheng-ping He
Publication date
15-04-2024
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-023-01166-2

Premium Partners