Skip to main content
Top
Published in: Wireless Networks 6/2023

01-08-2023 | Original Paper

Prediction of path loss in coastal and vegetative environments with deep learning at 5G sub-6 GHz

Authors: Kiyas Kayaalp, Sedat Metlek, Abdullah Genc, Habib Dogan, İbrahim Bahadir Basyigit

Published in: Wireless Networks | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Path loss prediction is quite important for the network performance of the wireless sensors, quality of cellular communication-based link budget, and optimization of coverage planning in mobile networks. With the development of 5G technology, even though different log-distance path loss models are generated for these, new-developed methods are required to make models more flexible and accurate for complex environments. In this study, for different coastal terrains (air-dry sand, wet sand, small pebble, big pebble) and various vegetable areas (pine, orange, cherry, and walnut), the principle and procedure of deep learning-based path loss prediction are provided in 3.5 GHz, 3.8 GHz, and 4.2 GHz in the 5G frequency zone, as a novelty. For this, recurrent neural network (RNN) and long short-term memory (LSTM) methods are proposed. The test sample number is 240 since 20% of all datasets (1200) are test data. In general, path loss for coastal terrains is higher than path loss for vegetation areas with an average of 5 dB. For both coastal terrains and vegetation areas, the recurrent neural network method predicts better than the long short-term memory method. Consequently, for both coastal terrains and vegetation areas, RNN models with R2 values of 0.9677 and 0.9042, respectively, are preferred.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cheerla, S., Ratnam, D. V., & Borra, H. S. (2018). Neural network-based path loss model for cellular mobile networks at 800 and 1800 MHz bands. AEU-International Journal of Electronics and Communications, 94, 179–186. Cheerla, S., Ratnam, D. V., & Borra, H. S. (2018). Neural network-based path loss model for cellular mobile networks at 800 and 1800 MHz bands. AEU-International Journal of Electronics and Communications, 94, 179–186.
2.
go back to reference Hejselbaek, J., Odum Nielsen, J., Fan, W., & Pedersen, G. F. (2018). Empirical study of near ground propagation in forest terrain for internet-of-things type device-to-device communication. IEEE Access, 6, 54052–54063. Hejselbaek, J., Odum Nielsen, J., Fan, W., & Pedersen, G. F. (2018). Empirical study of near ground propagation in forest terrain for internet-of-things type device-to-device communication. IEEE Access, 6, 54052–54063.
3.
go back to reference Azevedo, J. A., & Santos, F. E. (2017). A model to estimate the path loss in areas with foliage of trees. AEU-International Journal of Electronics and Communications, 71, 157–161. Azevedo, J. A., & Santos, F. E. (2017). A model to estimate the path loss in areas with foliage of trees. AEU-International Journal of Electronics and Communications, 71, 157–161.
4.
go back to reference Eras, L. E. C., Silva, D. K. N. D., Barros, F. B., Correia, L. M., & Cavalcante, G. P. S. (2018). A radio propagation model for mixed paths in amazon environments for the uhf band. Wireless Communications and Mobile Computing, 2018, 1–15. Eras, L. E. C., Silva, D. K. N. D., Barros, F. B., Correia, L. M., & Cavalcante, G. P. S. (2018). A radio propagation model for mixed paths in amazon environments for the uhf band. Wireless Communications and Mobile Computing, 2018, 1–15.
5.
go back to reference Basyigit, I. B., & Dogan, H. (2020). Troubleshooting of handover problems in 900 MHz for speech quality. Wireless Personal Communications, 114, 1833–1845. Basyigit, I. B., & Dogan, H. (2020). Troubleshooting of handover problems in 900 MHz for speech quality. Wireless Personal Communications, 114, 1833–1845.
6.
go back to reference Picallo, I., Klaina, H., Lopez-Iturri, P., Aguirre, E., Celaya-Echarri, M., Azpilicueta, L., Eguizábal, A., Falcone, F., & Alejos, A. (2019). A radio channel model for d2d communications blocked by single trees in forest environments. Sensors, 19(21), 4606. https://doi.org/10.3390/s19214606.CrossRef Picallo, I., Klaina, H., Lopez-Iturri, P., Aguirre, E., Celaya-Echarri, M., Azpilicueta, L., Eguizábal, A., Falcone, F., & Alejos, A. (2019). A radio channel model for d2d communications blocked by single trees in forest environments. Sensors, 19(21), 4606. https://​doi.​org/​10.​3390/​s19214606.CrossRef
7.
go back to reference Cama-Pinto, D., & Damas, A. (2019). Path loss determination using linear and cubic regression inside a classic tomato greenhouse. International Journal of Environmental Research and Public Health, 16(10), 1744. Cama-Pinto, D., & Damas, A. (2019). Path loss determination using linear and cubic regression inside a classic tomato greenhouse. International Journal of Environmental Research and Public Health, 16(10), 1744.
8.
go back to reference Raheemah, A., Sabri, N., Salim, M. S., Ehkan, P., & Ahmad, R. B. (2016). New empirical path loss model for wireless sensor networks in mango greenhouses. Computers and Electronics in Agriculture, 127, 553–560. Raheemah, A., Sabri, N., Salim, M. S., Ehkan, P., & Ahmad, R. B. (2016). New empirical path loss model for wireless sensor networks in mango greenhouses. Computers and Electronics in Agriculture, 127, 553–560.
9.
go back to reference Genc, A. (2021). A new path loss model based on the volumetric occupancy rate for the pine forests at 5G frequency band. International Journal of Microwave and Wireless Technologies, 13(2), 144–153. Genc, A. (2021). A new path loss model based on the volumetric occupancy rate for the pine forests at 5G frequency band. International Journal of Microwave and Wireless Technologies, 13(2), 144–153.
10.
go back to reference Meng, Y. S., & Lee, Y. H. (2009). Empirical near ground path loss modeling in a forest at VHF and UHF bands. IEEE Transactions on Antennas and Propagation, 57(5), 1461–1468. Meng, Y. S., & Lee, Y. H. (2009). Empirical near ground path loss modeling in a forest at VHF and UHF bands. IEEE Transactions on Antennas and Propagation, 57(5), 1461–1468.
11.
go back to reference Dogan, H. (2021). A new empirical propagation model depending on volumetric density in citrus orchards for wireless sensor network applications at sub-6 GHz frequency region. International Journal of RF and Microwave Computer-Aided Engineering, e22778, 1–10. Dogan, H. (2021). A new empirical propagation model depending on volumetric density in citrus orchards for wireless sensor network applications at sub-6 GHz frequency region. International Journal of RF and Microwave Computer-Aided Engineering, e22778, 1–10.
12.
go back to reference Rao, T. R., & Balachander, D. (2013). Ultra-high frequency near-ground short-range propagation measurements in forest and plantation environments for wireless sensor networks. IET Wireless Sensor Systems, 3(1), 80–84. Rao, T. R., & Balachander, D. (2013). Ultra-high frequency near-ground short-range propagation measurements in forest and plantation environments for wireless sensor networks. IET Wireless Sensor Systems, 3(1), 80–84.
13.
go back to reference Olasupo, T. O., & Otero, C. E. (2016). Empirical path loss models for wireless sensor network deployments in short and tall natural grass environments. IEEE Transactions on Antennas and Propagation, 64(9), 4012–4021.MathSciNetMATH Olasupo, T. O., & Otero, C. E. (2016). Empirical path loss models for wireless sensor network deployments in short and tall natural grass environments. IEEE Transactions on Antennas and Propagation, 64(9), 4012–4021.MathSciNetMATH
14.
go back to reference Cheffena, M., & Mohamed, M. (2017). Empirical path loss models for wireless sensor network deployment in snowy environments. IEEE Antennas and Wireless Propagation Letters, 16, 2877–2880. Cheffena, M., & Mohamed, M. (2017). Empirical path loss models for wireless sensor network deployment in snowy environments. IEEE Antennas and Wireless Propagation Letters, 16, 2877–2880.
15.
go back to reference Alsayyari, A., & Kostanic, I. (2014) An empirical path loss model for wireless sensor network deployment in a sand terrain environment. In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 218–223. Alsayyari, A., & Kostanic, I. (2014) An empirical path loss model for wireless sensor network deployment in a sand terrain environment. In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 218–223.
16.
go back to reference Li, Q., & Zhang, H. (2019). A new method for path-loss modeling. International Journal of Microwave and Wireless Technologies, 11(8), 739–746. Li, Q., & Zhang, H. (2019). A new method for path-loss modeling. International Journal of Microwave and Wireless Technologies, 11(8), 739–746.
17.
go back to reference Kurnaz, O., & Helhel, S. (2014). Near ground propagation model for pine tree forest environment. AEU-International Journal of Electronics and Communications, 68(10), 944–950. Kurnaz, O., & Helhel, S. (2014). Near ground propagation model for pine tree forest environment. AEU-International Journal of Electronics and Communications, 68(10), 944–950.
18.
go back to reference Leonor, N. R., & Caldeirinha, R. F. (2014). A 2D ray-tracing based model for micro-and millimeter-wave propagation through vegetation. IEEE Transactions on Antennas and Propagation, 62(12), 6443–6453.MathSciNetMATH Leonor, N. R., & Caldeirinha, R. F. (2014). A 2D ray-tracing based model for micro-and millimeter-wave propagation through vegetation. IEEE Transactions on Antennas and Propagation, 62(12), 6443–6453.MathSciNetMATH
19.
go back to reference Gay-Fernández, J. A., & Cuinas, I. (2014). Short-term modeling in vegetation media at wireless network frequency bands. IEEE Transactions on Antennas and Propagation, 62(6), 3330–3337. Gay-Fernández, J. A., & Cuinas, I. (2014). Short-term modeling in vegetation media at wireless network frequency bands. IEEE Transactions on Antennas and Propagation, 62(6), 3330–3337.
20.
go back to reference Gay-Fernandez, J. A., & Cuinas, I. (2013). Peer to peer wireless propagation measurements and path-loss modeling in vegetated environments. IEEE Transactions on Antennas and Propagation, 61(6), 3302–3311. Gay-Fernandez, J. A., & Cuinas, I. (2013). Peer to peer wireless propagation measurements and path-loss modeling in vegetated environments. IEEE Transactions on Antennas and Propagation, 61(6), 3302–3311.
21.
go back to reference Gay-Fernández & J. A. (2011). Radio-electric validation of an electronic cowbell based on ZigBee technology. IEEE Antennas and Propagation Magazine, 53(4), 40–44. Gay-Fernández & J. A. (2011). Radio-electric validation of an electronic cowbell based on ZigBee technology. IEEE Antennas and Propagation Magazine, 53(4), 40–44.
22.
go back to reference Saunders, S. R., & Aragón-Zavala, A. (2007). Antennas and propagation for wireless communication systems (2nd ed., pp. 89–102). Delhi: Pashupai Printing. Saunders, S. R., & Aragón-Zavala, A. (2007). Antennas and propagation for wireless communication systems (2nd ed., pp. 89–102). Delhi: Pashupai Printing.
23.
go back to reference He, R., & Zhong, Z. (2012). Analysis of the relation between Fresnel zone and path loss exponent based on two-ray model. IEEE Antennas and Wireless Propagation Letters, 11, 208–211. He, R., & Zhong, Z. (2012). Analysis of the relation between Fresnel zone and path loss exponent based on two-ray model. IEEE Antennas and Wireless Propagation Letters, 11, 208–211.
24.
go back to reference Jarndal, A., & Alnajjar, K. (2018). MM-wave wideband propagation model for wireless communications in built-up environments. Physical communication, 28, 97–107. Jarndal, A., & Alnajjar, K. (2018). MM-wave wideband propagation model for wireless communications in built-up environments. Physical communication, 28, 97–107.
25.
go back to reference Zang, J., & Wang, X. (2017). Measurements and modeling of path loss over irregular terrain for near-ground and short-range communications. Progress in Electromagnetics Research M, 57, 55–62. Zang, J., & Wang, X. (2017). Measurements and modeling of path loss over irregular terrain for near-ground and short-range communications. Progress in Electromagnetics Research M, 57, 55–62.
26.
go back to reference Akyildiz, I. F., & Vuran, M. C. (2010). Wireless sensor networks (pp. 123–156). Wiley. ISBN-13: 978-0470036013. Akyildiz, I. F., & Vuran, M. C. (2010). Wireless sensor networks (pp. 123–156). Wiley. ISBN-13: 978-0470036013.
27.
go back to reference Sawant, R. P. & Liang, Q. (2007). Experimental path loss models for wireless sensor networks. In MILCOM 2007-IEEE Military Communications Conference, pp. 1–7. Sawant, R. P. & Liang, Q. (2007). Experimental path loss models for wireless sensor networks. In MILCOM 2007-IEEE Military Communications Conference, pp. 1–7.
28.
go back to reference Olasupo, T., & Shaikh, S. (2015). Effects of terrain variations in wireless sensor network deployments. In IEEE International RF and Microwave Conference (RFM), pp. 83–88. Olasupo, T., & Shaikh, S. (2015). Effects of terrain variations in wireless sensor network deployments. In IEEE International RF and Microwave Conference (RFM), pp. 83–88.
29.
go back to reference Cassel, M., & Dépret, T. (2017). Assessment of a new solution for tracking pebbles in rivers based on active RFID. Earth Surface Processes and Landforms, 42(13), 1938–1951. Cassel, M., & Dépret, T. (2017). Assessment of a new solution for tracking pebbles in rivers based on active RFID. Earth Surface Processes and Landforms, 42(13), 1938–1951.
30.
go back to reference Papini, M., & Ivanov, V. I. (2017). Monitoring bedload sediment transport in a pre-alpine river: An experimental method. Rendiconti Online Societa Geologica Italiana, 43, 57–63. Papini, M., & Ivanov, V. I. (2017). Monitoring bedload sediment transport in a pre-alpine river: An experimental method. Rendiconti Online Societa Geologica Italiana, 43, 57–63.
31.
go back to reference Malon, K., Skokowski, P., & Lopatka, J. (2018). Optimization of wireless sensor network deployment for electromagnetic situation monitoring. International Journal of Microwave and Wireless Technologies, 10(7), 746–753. Malon, K., Skokowski, P., & Lopatka, J. (2018). Optimization of wireless sensor network deployment for electromagnetic situation monitoring. International Journal of Microwave and Wireless Technologies, 10(7), 746–753.
32.
go back to reference Van Khoa, V., & Takayama, S. (2018). Wireless sensor network in landslide monitoring system with remote data management. Measurement, 118, 214–229. Van Khoa, V., & Takayama, S. (2018). Wireless sensor network in landslide monitoring system with remote data management. Measurement, 118, 214–229.
33.
go back to reference Balaji, S., & Anitha, M. (2020). Energy efficient target coverage for a wireless sensor network. Measurement, 165, 108167. Balaji, S., & Anitha, M. (2020). Energy efficient target coverage for a wireless sensor network. Measurement, 165, 108167.
34.
go back to reference Usman, M., & Gebremariam, A. A. (2015). A software-defined device-to-device communication architecture for public safety applications in 5G networks. IEEE Access, 3, 1649–1654. Usman, M., & Gebremariam, A. A. (2015). A software-defined device-to-device communication architecture for public safety applications in 5G networks. IEEE Access, 3, 1649–1654.
35.
go back to reference Mahmoud, H. H., & ElAttar, H. M. (2017). Optimal operational parameters for 5G energy harvesting cognitive wireless sensor networks. IETE Technical Review, 34(sup1), 62–72. Mahmoud, H. H., & ElAttar, H. M. (2017). Optimal operational parameters for 5G energy harvesting cognitive wireless sensor networks. IETE Technical Review, 34(sup1), 62–72.
36.
go back to reference Ahmadien, O., & Ates, H. F. (2020). Predicting path loss distribution of an area from satellite images using deep learning. IEEE Access, 8, 64982–64991. Ahmadien, O., & Ates, H. F. (2020). Predicting path loss distribution of an area from satellite images using deep learning. IEEE Access, 8, 64982–64991.
37.
go back to reference Thrane, J., & Zibar, D. (2020). Model-aided deep learning method for path loss prediction in mobile communication systems at 2.6 GHz. IEEE Access, 8, 7925–7936. Thrane, J., & Zibar, D. (2020). Model-aided deep learning method for path loss prediction in mobile communication systems at 2.6 GHz. IEEE Access, 8, 7925–7936.
38.
go back to reference Calik, N., & Belen, M. A. (2020). Deep learning base modified MLP model for precise scattering parameter prediction of capacitive feed antenna. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 33(2), e2682. Calik, N., & Belen, M. A. (2020). Deep learning base modified MLP model for precise scattering parameter prediction of capacitive feed antenna. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 33(2), e2682.
39.
go back to reference Donkers, T., & Loepp, B. (2017). Sequential user-based recurrent neural network recommendations. In Proceedings of the eleventh ACM conference on recommender systems, pp. 152–160. Donkers, T., & Loepp, B. (2017). Sequential user-based recurrent neural network recommendations. In Proceedings of the eleventh ACM conference on recommender systems, pp. 152–160.
40.
go back to reference Ta, V. D., & Liu, C. M. (2020). Portfolio optimization-based stock prediction using long-short term memory network in quantitative trading. Applied Sciences, 10(2), 437. Ta, V. D., & Liu, C. M. (2020). Portfolio optimization-based stock prediction using long-short term memory network in quantitative trading. Applied Sciences, 10(2), 437.
41.
go back to reference Basyigit, I. B., Genc, A., Dogan, H., Senel, F. A., & Helhel, S. (2021). Deep learning for both broadband prediction of the radiated emission from heatsinks and heatsink optimization. Engineering Science and Technology, an International Journal, 24(3), 706–714. Basyigit, I. B., Genc, A., Dogan, H., Senel, F. A., & Helhel, S. (2021). Deep learning for both broadband prediction of the radiated emission from heatsinks and heatsink optimization. Engineering Science and Technology, an International Journal, 24(3), 706–714.
42.
go back to reference Metlek, S., Kayaalp, K., Basyigit, I. B., Genc, A., & Dogan, H. (2021). The dielectric properties prediction of the vegetation depending on the moisture content using the deep neural network model. International Journal of RF and Microwave Computer-Aided Engineering, 31(1), e22496. Metlek, S., Kayaalp, K., Basyigit, I. B., Genc, A., & Dogan, H. (2021). The dielectric properties prediction of the vegetation depending on the moisture content using the deep neural network model. International Journal of RF and Microwave Computer-Aided Engineering, 31(1), e22496.
43.
go back to reference Roy, K., & Mandal, K. K. (2019). Ant-Lion Optimizer algorithm and recurrent neural network for energy management of micro grid connected system. Energy, 167, 402–416. Roy, K., & Mandal, K. K. (2019). Ant-Lion Optimizer algorithm and recurrent neural network for energy management of micro grid connected system. Energy, 167, 402–416.
44.
go back to reference Bistron, M., & Piotrowski, Z. (2021). Artificial intelligence applications in military systems and their influence on sense of security of citizens. Electronics, 10(7), 871. Bistron, M., & Piotrowski, Z. (2021). Artificial intelligence applications in military systems and their influence on sense of security of citizens. Electronics, 10(7), 871.
45.
go back to reference Negassi, M., & Suarez-Ibarrola, R. (2020). Application of artificial neural networks for automated analysis of cystoscopic images: A review of the current status and future prospects. World Journal of Urology, 38(10), 2349–2358. Negassi, M., & Suarez-Ibarrola, R. (2020). Application of artificial neural networks for automated analysis of cystoscopic images: A review of the current status and future prospects. World Journal of Urology, 38(10), 2349–2358.
46.
go back to reference Tran-Ngoc, H., & Khatir, S. (2021). Efficient Artificial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in laminated composite structures. Composite Structures, 262(113339), 1–16. Tran-Ngoc, H., & Khatir, S. (2021). Efficient Artificial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in laminated composite structures. Composite Structures, 262(113339), 1–16.
47.
go back to reference Alamia, A., & Gauducheau, V. (2020). Comparing feedforward and recurrent neural network architectures with human behavior in artificial grammar learning. Scientific Reports, 10(1), 1–15. Alamia, A., & Gauducheau, V. (2020). Comparing feedforward and recurrent neural network architectures with human behavior in artificial grammar learning. Scientific Reports, 10(1), 1–15.
48.
go back to reference Bai, Y., & Xie, J. (2021). Regression modeling for enterprise electricity consumption: a comparison of recurrent neural network and its variants. International Journal of Electrical Power & Energy Systems, 126, 106612. Bai, Y., & Xie, J. (2021). Regression modeling for enterprise electricity consumption: a comparison of recurrent neural network and its variants. International Journal of Electrical Power & Energy Systems, 126, 106612.
49.
go back to reference Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
Metadata
Title
Prediction of path loss in coastal and vegetative environments with deep learning at 5G sub-6 GHz
Authors
Kiyas Kayaalp
Sedat Metlek
Abdullah Genc
Habib Dogan
İbrahim Bahadir Basyigit
Publication date
01-08-2023
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2023
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-023-03285-w

Other articles of this Issue 6/2023

Wireless Networks 6/2023 Go to the issue