Skip to main content
Top
Published in: Journal of Materials Science 12/2016

22-03-2016 | Original Paper

Preparation and characterization of electrospun PHBV/PEO mats: The role of solvent and PEO component

Authors: Yongjing Xu, Liming Zou, Hongwei Lu, Yizhi Wei, Jianbing Hua, Shuyun Chen

Published in: Journal of Materials Science | Issue 12/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/polyethylene oxide (PEO) mats were fabricated by electrospinning in different weight ratios (i.e., 100/0, 90/10, 80/20, 70/30, 60/40, 50/50, 0/100). In this paper, dichloromethane (DCM) has been used as potential solvent for electrospinning. In order to evaluate the influence of PEO and DCM on the final properties of PHBV mat, the following characterization techniques were employed: scanning electron microscopy, Fourier transform infrared attenuated total reflectance spectroscopy, X-ray diffraction analysis, thermogravimetric analysis, differential scanning calorimetry, and the test of mechanical properties, water contact angle, porosity analysis, swelling properties, water–vapor transmission rate (WVTR) and in vitro degradation behavior. All PHBV/PEO electrospun mats consist of randomly oriented and distinctly separated fibers. The average fiber diameters and the porosity were 738–1098 nm and 80–90 %, respectively. The water contact angle, swelling ratio, WVTR, and in vitro degradation behavior of PHBV/PEO electrospun mats were 124°–55°, 265–436 %, 1977–2610 g m−2 day−1, and 17–50 %, respectively. Besides, the crystallinity degree of PHBV/PEO electrospun mats has decreased with the increasing of PEO content. Therefore, PEO imparted PHBV/PEO electrospun mats on better properties, improving the nature defects of PHBV. In particular, PHBV/PEO 70/30 electrospun mat with optimizing performance, was considered the best candidate for potential scaffold in skin tissue engineering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Huang ZM, Zhang YZ, Kotaki M (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRef Huang ZM, Zhang YZ, Kotaki M (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRef
2.
go back to reference Subramanian A, Krishnan UM, Sethuraman SJ (2009) Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. Biomed Sci 16:1–11CrossRef Subramanian A, Krishnan UM, Sethuraman SJ (2009) Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. Biomed Sci 16:1–11CrossRef
3.
go back to reference Ondarcuhu T, Joachim C (1998) Drawing a single nanofibre over hundreds of microns. Europhys Lett 42:215–220CrossRef Ondarcuhu T, Joachim C (1998) Drawing a single nanofibre over hundreds of microns. Europhys Lett 42:215–220CrossRef
4.
go back to reference Feng L, Li S, Li H (2002) Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem Int Ed 41:1221–1223CrossRef Feng L, Li S, Li H (2002) Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem Int Ed 41:1221–1223CrossRef
5.
go back to reference Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746CrossRef Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746CrossRef
6.
go back to reference Ma PX, Zhang R (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 46:60–72CrossRef Ma PX, Zhang R (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 46:60–72CrossRef
7.
go back to reference Liu GJ, Ding JF, Qiao LJ (1999) Polystyrene-block-poly (2-cinnamoylethyl methacrylate) nanofibers—preparation, characterization, and liquid crystalline properties. Chem Eur J 5:2740–2749CrossRef Liu GJ, Ding JF, Qiao LJ (1999) Polystyrene-block-poly (2-cinnamoylethyl methacrylate) nanofibers—preparation, characterization, and liquid crystalline properties. Chem Eur J 5:2740–2749CrossRef
8.
go back to reference Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421CrossRef Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421CrossRef
9.
go back to reference Deitzel JM, Kleinmeyer J, Hirvonen JK (2001) Controlled deposition of electrospun poly (ethylene oxide) fibers. Polymer 42:8163–8170CrossRef Deitzel JM, Kleinmeyer J, Hirvonen JK (2001) Controlled deposition of electrospun poly (ethylene oxide) fibers. Polymer 42:8163–8170CrossRef
10.
go back to reference Fong H, Reneker DH (2001) Electrospinning and formation of nanofibers. Hanser, Munich, p 225 Fong H, Reneker DH (2001) Electrospinning and formation of nanofibers. Hanser, Munich, p 225
11.
go back to reference Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211CrossRef Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211CrossRef
12.
go back to reference Barnes CP, Sell SA, Boland ED (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59:1413–1433CrossRef Barnes CP, Sell SA, Boland ED (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59:1413–1433CrossRef
13.
go back to reference Khil MS, Cha DI, Kim HY (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B 67:675–679CrossRef Khil MS, Cha DI, Kim HY (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B 67:675–679CrossRef
14.
go back to reference Kim SH, Nam YS, Lee TS (2003) Silk fibroin nanofiber. electrospinning, properties, and structure. Polym J 35:185–190CrossRef Kim SH, Nam YS, Lee TS (2003) Silk fibroin nanofiber. electrospinning, properties, and structure. Polym J 35:185–190CrossRef
15.
go back to reference Zeng J, Xu X, Chen X (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92:227–231CrossRef Zeng J, Xu X, Chen X (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92:227–231CrossRef
16.
go back to reference Verrect G, Chun I, Rosenblantt Peeters JJ (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release 92:349–360CrossRef Verrect G, Chun I, Rosenblantt Peeters JJ (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release 92:349–360CrossRef
17.
go back to reference Venugopal J, Sharon L, Choon AT, Ramakrishna SJ (2008) Interaction of cells and nanofiber scaffolds in tissue engineering. Biomed Mater Res B 84B:34–48CrossRef Venugopal J, Sharon L, Choon AT, Ramakrishna SJ (2008) Interaction of cells and nanofiber scaffolds in tissue engineering. Biomed Mater Res B 84B:34–48CrossRef
18.
go back to reference Ma PX, Choi JW (2001) Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng 7:23–33CrossRef Ma PX, Choi JW (2001) Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng 7:23–33CrossRef
19.
go back to reference Zhang YZ, Wang X, Feng Y (2006) Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly (ε-caprolactone) nanofibers for sustained release. Biomacromolecules 7:1049–1057CrossRef Zhang YZ, Wang X, Feng Y (2006) Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly (ε-caprolactone) nanofibers for sustained release. Biomacromolecules 7:1049–1057CrossRef
20.
go back to reference Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223CrossRef Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223CrossRef
21.
go back to reference Wang C, Hsuand CH, Hwang IH (2008) A phase-I study evaluating the combination of pegylated liposomal doxorubicin and paclitaxel as salvage chemotherapy in metastatic breast cancer previously treated with anthracycline. Polymer 49:4188–4195CrossRef Wang C, Hsuand CH, Hwang IH (2008) A phase-I study evaluating the combination of pegylated liposomal doxorubicin and paclitaxel as salvage chemotherapy in metastatic breast cancer previously treated with anthracycline. Polymer 49:4188–4195CrossRef
22.
go back to reference Sendil D, Gürsel I, Wise DL (1999) Antibiotic release from biodegradable PHBV microparticles. J Control Release 59:207–217CrossRef Sendil D, Gürsel I, Wise DL (1999) Antibiotic release from biodegradable PHBV microparticles. J Control Release 59:207–217CrossRef
23.
go back to reference Dai ZW, Zou HX, Chen GQ (2009) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as an injectable implant system for prevention of post-surgical tissue adhesion. Biomaterials 30:3075–3083CrossRef Dai ZW, Zou HX, Chen GQ (2009) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as an injectable implant system for prevention of post-surgical tissue adhesion. Biomaterials 30:3075–3083CrossRef
24.
go back to reference Hogge J, Krasner D, Nguyen H (2000) Diabetic foot disorders. J Am Podiatr Med Assoc 90:57–65CrossRef Hogge J, Krasner D, Nguyen H (2000) Diabetic foot disorders. J Am Podiatr Med Assoc 90:57–65CrossRef
25.
go back to reference Muzzarelli RAA (2011) Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Marine Drug 9:1510–1533CrossRef Muzzarelli RAA (2011) Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Marine Drug 9:1510–1533CrossRef
26.
go back to reference Van der Veen VC, Van der Wal MBA, Van Leeuwen MCE (2010) Biological background of dermal substitutes. Burns 36:305–321CrossRef Van der Veen VC, Van der Wal MBA, Van Leeuwen MCE (2010) Biological background of dermal substitutes. Burns 36:305–321CrossRef
27.
go back to reference Nangia A, Gambhir R, Maibach H (1991) Factors influencing the performance of temporary skin substitutes. Clin Mater 7:3–13CrossRef Nangia A, Gambhir R, Maibach H (1991) Factors influencing the performance of temporary skin substitutes. Clin Mater 7:3–13CrossRef
28.
go back to reference Kuppan P, Sethuraman S, Krishnan UM (2014) Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-based nanofibrous scaffolds to support functional esophageal epithelial cells towards engineering the esophagus. J Biomater Sci Polym Ed 26:574–593CrossRef Kuppan P, Sethuraman S, Krishnan UM (2014) Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-based nanofibrous scaffolds to support functional esophageal epithelial cells towards engineering the esophagus. J Biomater Sci Polym Ed 26:574–593CrossRef
29.
go back to reference Veleirnho B, Daniela SC, Panlo FD (2012) Nanofibrous poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration. Int J Boil Macromol 51:343–350CrossRef Veleirnho B, Daniela SC, Panlo FD (2012) Nanofibrous poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration. Int J Boil Macromol 51:343–350CrossRef
30.
go back to reference Modi S, Koelling K, Vodovotz Y (2013) Assessment of PHB with varying hydroxyvalerate content for potential packaging applications. Eur Polym J 49:3681–3690CrossRef Modi S, Koelling K, Vodovotz Y (2013) Assessment of PHB with varying hydroxyvalerate content for potential packaging applications. Eur Polym J 49:3681–3690CrossRef
31.
go back to reference Meng W, Kim S, Yuan J (2007) Electrospun PHBV/collagen composite nanofibrous scaffolds for tissue engineering. J Biomater Sci Polym Ed 18:81–94CrossRef Meng W, Kim S, Yuan J (2007) Electrospun PHBV/collagen composite nanofibrous scaffolds for tissue engineering. J Biomater Sci Polym Ed 18:81–94CrossRef
32.
go back to reference Tan SM, Ismail J, Kummerlowe C (2006) Crystallization and melting behavior of blends comprising poly(3-hydroxy butyrate-co-3-hydroxy valerate) and poly(ethylene oxide). J Appl Polym Sci 101:2776–2783CrossRef Tan SM, Ismail J, Kummerlowe C (2006) Crystallization and melting behavior of blends comprising poly(3-hydroxy butyrate-co-3-hydroxy valerate) and poly(ethylene oxide). J Appl Polym Sci 101:2776–2783CrossRef
33.
go back to reference Bianco A, Calderone M, Cacciotti I (2013) Electrospun PHBV/PEO co-solution blends: microstructure, thermal and mechanical properties. Mater Sci Eng, C 33:1067–1077CrossRef Bianco A, Calderone M, Cacciotti I (2013) Electrospun PHBV/PEO co-solution blends: microstructure, thermal and mechanical properties. Mater Sci Eng, C 33:1067–1077CrossRef
34.
go back to reference Siraj S, Sudhakar P, Mallikarjuna B (2014) Biodegradable PHBV/PEO blend microspheres for controlled release of bosentan monohydrate: preparation, characterization and in vitro release studies. Int J Pharm Sci Rev Res 25:103–109 Siraj S, Sudhakar P, Mallikarjuna B (2014) Biodegradable PHBV/PEO blend microspheres for controlled release of bosentan monohydrate: preparation, characterization and in vitro release studies. Int J Pharm Sci Rev Res 25:103–109
35.
go back to reference Li X, Liu KL, Wang M (2009) Improving hydrophilicity, mechanical properties and biocompatibility of poly [(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide). Acta Biomater 5:2002–2012CrossRef Li X, Liu KL, Wang M (2009) Improving hydrophilicity, mechanical properties and biocompatibility of poly [(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide). Acta Biomater 5:2002–2012CrossRef
36.
go back to reference Cheng NL (2008) Solvent handbook. Publishing Corporation, Beijing, p 252 Cheng NL (2008) Solvent handbook. Publishing Corporation, Beijing, p 252
37.
go back to reference Ma Z, Kotaki M, Ramakrishna S (2006) Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning: a novel affinity membrane. J Membr Sci 272:179–187CrossRef Ma Z, Kotaki M, Ramakrishna S (2006) Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning: a novel affinity membrane. J Membr Sci 272:179–187CrossRef
38.
go back to reference Ding Y, Roether JA, Boccaccini AR, Schubert DW (2014) Fabrication of electrospun poly (3-hydroxybutyrate)/poly (ε-caprolactone)/silica hybrid fibermats with and without calcium addition. Eur Polym J 55:222–234CrossRef Ding Y, Roether JA, Boccaccini AR, Schubert DW (2014) Fabrication of electrospun poly (3-hydroxybutyrate)/poly (ε-caprolactone)/silica hybrid fibermats with and without calcium addition. Eur Polym J 55:222–234CrossRef
39.
go back to reference Avella M, Martuscelli E, Raimo M (2000) Review properties of blends and composites based on poly (3-hydroxy) butyrate (PHB) and poly (3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. J Mater Sci 35:523–545. doi:10.1023/A:1004740522751 CrossRef Avella M, Martuscelli E, Raimo M (2000) Review properties of blends and composites based on poly (3-hydroxy) butyrate (PHB) and poly (3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. J Mater Sci 35:523–545. doi:10.​1023/​A:​1004740522751 CrossRef
40.
go back to reference Liau WB, Chang CF (2000) Casting solvent effect on crystallization behavior and morphology of poly (ethylene oxide)/poly (methyl methacrylate). J Appl Polym Sci 76:1627–1636CrossRef Liau WB, Chang CF (2000) Casting solvent effect on crystallization behavior and morphology of poly (ethylene oxide)/poly (methyl methacrylate). J Appl Polym Sci 76:1627–1636CrossRef
41.
go back to reference Bianco A, Bozzo BM, Del Gaudio C (2011) Poly (l-lactic acid)/calcium-deficient nanohydroxyapatite electrospun mats for bone marrow stem cell cultures. J Bioact Compat Polym 26:225–241CrossRef Bianco A, Bozzo BM, Del Gaudio C (2011) Poly (l-lactic acid)/calcium-deficient nanohydroxyapatite electrospun mats for bone marrow stem cell cultures. J Bioact Compat Polym 26:225–241CrossRef
42.
go back to reference Wang C, Hsu CH, Hwang IH (2008) Scaling laws and internal structure for characterizing electrospun poly [(R)-3-hydroxybutyrate] fibers. Polymer 49:4188–4195CrossRef Wang C, Hsu CH, Hwang IH (2008) Scaling laws and internal structure for characterizing electrospun poly [(R)-3-hydroxybutyrate] fibers. Polymer 49:4188–4195CrossRef
43.
go back to reference Bianco A, Cacciotti I, Fragalà ME (2010) Eu-doped titania nanofibers: processing, thermal behaviour and luminescent properties. J Nanosci Nanotechnol 10:5183–5190CrossRef Bianco A, Cacciotti I, Fragalà ME (2010) Eu-doped titania nanofibers: processing, thermal behaviour and luminescent properties. J Nanosci Nanotechnol 10:5183–5190CrossRef
44.
go back to reference Cacciotti I, Bianco A, Pezzotti G (2011) Synthesis, thermal behaviour and luminescence properties of rare earth-doped titania nanofibers. Chem Eng J 166:751–764CrossRef Cacciotti I, Bianco A, Pezzotti G (2011) Synthesis, thermal behaviour and luminescence properties of rare earth-doped titania nanofibers. Chem Eng J 166:751–764CrossRef
45.
go back to reference Cacciotti I, Bianco A, Pezzotti G (2011) Terbium and ytterbium-doped titania luminescent nanofibers by means of electrospinning technique. Mater Chem Phys 126:532–541CrossRef Cacciotti I, Bianco A, Pezzotti G (2011) Terbium and ytterbium-doped titania luminescent nanofibers by means of electrospinning technique. Mater Chem Phys 126:532–541CrossRef
46.
go back to reference Xu C, Inai R, Kotaki M (2004) Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng 10:1160–1168CrossRef Xu C, Inai R, Kotaki M (2004) Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng 10:1160–1168CrossRef
47.
go back to reference Elias KL, Price RL (2002) Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials 23:3279–3287CrossRef Elias KL, Price RL (2002) Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials 23:3279–3287CrossRef
48.
go back to reference Bayari S, Severcan F, Gursel I (1998) A multidirectional motion pin-on-disk wear test method for prosthetic joint materials. J Biomed Mater 16:58–64 Bayari S, Severcan F, Gursel I (1998) A multidirectional motion pin-on-disk wear test method for prosthetic joint materials. J Biomed Mater 16:58–64
49.
go back to reference Li X, Hsu S (1984) An analysis of the crystallization behavior of poly (ethylene oxide)/poly (methyl methacrylate) blends by spectroscopic and calorimetric techniques. J Polym Sci Polym Phys Ed 22:1331–1342CrossRef Li X, Hsu S (1984) An analysis of the crystallization behavior of poly (ethylene oxide)/poly (methyl methacrylate) blends by spectroscopic and calorimetric techniques. J Polym Sci Polym Phys Ed 22:1331–1342CrossRef
50.
go back to reference Wessler K (2007) Sistemas de P(3HB) eP(3HB-co-3HV) com PCL-T: comportamento de fase, reologia, propriedades mecânicas e processabilidade. Dissertação de Mestrado, Universidade do Estado de Santa Catarina, Joinville Wessler K (2007) Sistemas de P(3HB) eP(3HB-co-3HV) com PCL-T: comportamento de fase, reologia, propriedades mecânicas e processabilidade. Dissertação de Mestrado, Universidade do Estado de Santa Catarina, Joinville
51.
go back to reference Tadokoro H, Chatani Y, Yoshihara T (1964) Structural studies on polyethers, [–(CH2)m–O–]n. II. Molecular structure of polyethylene oxide. Chem 73:109–127 Tadokoro H, Chatani Y, Yoshihara T (1964) Structural studies on polyethers, [–(CH2)m–O–]n. II. Molecular structure of polyethylene oxide. Chem 73:109–127
52.
go back to reference Li S, Garreau H, Pauvert B (2002) Enzymatic degradation of block copolymers prepared from ε-caprolactone and poly (ethylene glycol). Biomacromolecules 3:525–530CrossRef Li S, Garreau H, Pauvert B (2002) Enzymatic degradation of block copolymers prepared from ε-caprolactone and poly (ethylene glycol). Biomacromolecules 3:525–530CrossRef
53.
go back to reference Parra DF, Fusaro J, Gaboardi F, Rosa DS (2006) Influence of poly (ethylene glycol) on the thermal, mechanical, morphological, physical–chemical and biodegradation properties of poly (3-hydroxybutyrate). Polym Degrad Stab 91:1954–1959CrossRef Parra DF, Fusaro J, Gaboardi F, Rosa DS (2006) Influence of poly (ethylene glycol) on the thermal, mechanical, morphological, physical–chemical and biodegradation properties of poly (3-hydroxybutyrate). Polym Degrad Stab 91:1954–1959CrossRef
54.
go back to reference Lowery JL, Datta N, Rutledge GC (2010) Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly (ɛ-caprolactone) fibrous mats. Biomaterials 31:491–504CrossRef Lowery JL, Datta N, Rutledge GC (2010) Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly (ɛ-caprolactone) fibrous mats. Biomaterials 31:491–504CrossRef
55.
go back to reference Yang H, Liu J (2004) Green composites of organic materials and recycled post-consumer polyethylene. Polym Int 53:1677–1681CrossRef Yang H, Liu J (2004) Green composites of organic materials and recycled post-consumer polyethylene. Polym Int 53:1677–1681CrossRef
56.
go back to reference Wang FY, Ma CCM, Wu WJ (2001) Kinetic parameters of thermal degradation of polyethylene glycol-toughened novolac-type phenolic resin. J Appl Polym Sci 80(2):188–196CrossRef Wang FY, Ma CCM, Wu WJ (2001) Kinetic parameters of thermal degradation of polyethylene glycol-toughened novolac-type phenolic resin. J Appl Polym Sci 80(2):188–196CrossRef
57.
go back to reference Wanasekara ND, Chen M, Chalivendra VB, Bhowmick S (2010) Role of scaffold architecture and mechanical properties of electrospun scaffolds in cell seeding. Mater Res Soc Symp Proc 1239:163–175 Wanasekara ND, Chen M, Chalivendra VB, Bhowmick S (2010) Role of scaffold architecture and mechanical properties of electrospun scaffolds in cell seeding. Mater Res Soc Symp Proc 1239:163–175
58.
go back to reference Li WJ, Cooper JA, Mauck RL, Tuan RS (2006) Fabrication and characterization of six electrospun poly (α-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2(4):377–385CrossRef Li WJ, Cooper JA, Mauck RL, Tuan RS (2006) Fabrication and characterization of six electrospun poly (α-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2(4):377–385CrossRef
59.
go back to reference Tang C, Chen P, Liu H (2008) Continuous cellulose acetate/polyurethane composite nanofiber fabricated through electrospinning. Polym Eng Sci 8:1296–1303CrossRef Tang C, Chen P, Liu H (2008) Continuous cellulose acetate/polyurethane composite nanofiber fabricated through electrospinning. Polym Eng Sci 8:1296–1303CrossRef
60.
go back to reference Gassan J, Bledzki AK (1999) Alkali treatment of jute fibers: relationship between structure and mechanical properties. J Appl Polym Sci 71(4):623–629CrossRef Gassan J, Bledzki AK (1999) Alkali treatment of jute fibers: relationship between structure and mechanical properties. J Appl Polym Sci 71(4):623–629CrossRef
61.
go back to reference Yerramshetty JS, Akkus O (2008) The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42(3):476–482CrossRef Yerramshetty JS, Akkus O (2008) The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42(3):476–482CrossRef
62.
go back to reference Zhao K, Deng Y, Chen JC, Chen GQ (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24(6):1041–1045CrossRef Zhao K, Deng Y, Chen JC, Chen GQ (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24(6):1041–1045CrossRef
63.
go back to reference El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym Test 21(6):665–674CrossRef El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym Test 21(6):665–674CrossRef
64.
go back to reference Bessell TJ, Hull D, Shortall JB (1975) The effect of polymerization conditions and crystallinity on the mechanical properties and fracture of spherulitic nylon 6. J Mater Sci 10(7):1127–1136. doi:10.1007/BF00541393 CrossRef Bessell TJ, Hull D, Shortall JB (1975) The effect of polymerization conditions and crystallinity on the mechanical properties and fracture of spherulitic nylon 6. J Mater Sci 10(7):1127–1136. doi:10.​1007/​BF00541393 CrossRef
65.
go back to reference He W, Ma ZW, Yong T (2005) Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 26:7606–7615CrossRef He W, Ma ZW, Yong T (2005) Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 26:7606–7615CrossRef
66.
go back to reference Duan B, Yuan XY, Zhu Y (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J 42:2013–2022CrossRef Duan B, Yuan XY, Zhu Y (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J 42:2013–2022CrossRef
67.
go back to reference Wang YQ, Cai JY (2007) Enhanced cell affinity of poly (l-lactic acid) modified by base hydrolysis: wettability and surface roughness at nanometer scale. Curr Appl Phys 7:108–111CrossRef Wang YQ, Cai JY (2007) Enhanced cell affinity of poly (l-lactic acid) modified by base hydrolysis: wettability and surface roughness at nanometer scale. Curr Appl Phys 7:108–111CrossRef
68.
go back to reference Zhu XL, Cui WG, Li XH (2008) Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules 9:1795–1801CrossRef Zhu XL, Cui WG, Li XH (2008) Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules 9:1795–1801CrossRef
69.
go back to reference Peng ZY, Peng ZP, Shen YQ (2011) Fabrication and properties of gelatin/chitosan composite hydrogel. Polym Plast Technol 50:1160–1164CrossRef Peng ZY, Peng ZP, Shen YQ (2011) Fabrication and properties of gelatin/chitosan composite hydrogel. Polym Plast Technol 50:1160–1164CrossRef
70.
go back to reference Gu S, Wang Z, Ren J, Zhang C (2009) Electrospinning of gelatin and gelatin/poly (l-lactide) blend and its characteristics for wound dressing. Mat Sci Eng C 29:1822–1828CrossRef Gu S, Wang Z, Ren J, Zhang C (2009) Electrospinning of gelatin and gelatin/poly (l-lactide) blend and its characteristics for wound dressing. Mat Sci Eng C 29:1822–1828CrossRef
71.
go back to reference Mi F, Shyu S, Wu Y (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:165–173CrossRef Mi F, Shyu S, Wu Y (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:165–173CrossRef
Metadata
Title
Preparation and characterization of electrospun PHBV/PEO mats: The role of solvent and PEO component
Authors
Yongjing Xu
Liming Zou
Hongwei Lu
Yizhi Wei
Jianbing Hua
Shuyun Chen
Publication date
22-03-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9872-0

Other articles of this Issue 12/2016

Journal of Materials Science 12/2016 Go to the issue

Premium Partners