Skip to main content
Top
Published in: Journal of Materials Science 12/2016

18-03-2016 | Original Paper

Strain-rate sensitivity of scratch hardness and deformation mechanism in nanocrystalline Ni under micro-scratch testing

Authors: Rongtao Zhu, Yanfeng Li, Xinxi Zhang, Jianqiu Zhou

Published in: Journal of Materials Science | Issue 12/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To investigate the strain-rate sensitivity in nanocrystalline (NC) materials using a single experimental technique over a wide range of strain rate, the micro-scratch testing technique was selected to obtain consistent and systematic data of the strain-rate sensitivity in a fully dense, high purity, and well-characterized electrodeposited NC Ni sample. The scratch characterizations and mechanical properties of the sample under the different scratch velocities were discussed in details. First, some critical parameters under the micro-scratch testing, such as strain rates, scratch ditch widths, were confirmed. Then, the scratch hardness under the different scratch velocity was investigated. From the results, the sample exhibits strain-rate sensitive mechanical properties. Further, the average values of strain-rate sensitivity of the sample were calculated. The values increase with increasing scratch velocity, and exhibit higher values that are of the order of 0.03–0.1. The greater strain-rate sensitivity exponents indicate that the NC Ni samples have different fundamental physical deformation mechanisms. Finally, the fundamental physical deformation mechanism under scratch testing was inspected using SEM and TEM technique. From the SEM and TEM morphologies, the grain boundary dislocation pile-ups should be a carrier of plastic flow under scratch testing in the NC Ni sample.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Meyers MA, Mishr AA, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–557CrossRef Meyers MA, Mishr AA, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–557CrossRef
2.
go back to reference Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S (2003) Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater 51:5159–5172CrossRef Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S (2003) Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater 51:5159–5172CrossRef
3.
go back to reference Lu L, Li SX, Lu K (2001) An abnormal strain rate effect on tensile behavior in nanocrystalline copper. Scripta Mater 45:1163–1169CrossRef Lu L, Li SX, Lu K (2001) An abnormal strain rate effect on tensile behavior in nanocrystalline copper. Scripta Mater 45:1163–1169CrossRef
4.
go back to reference Dalla Torre F, Van Swygenhoven H, Victoria M (2002) Nanocrystalline electrodeposited Ni: microstructure and tensile properties. Acta Mater 50:3957–3970CrossRef Dalla Torre F, Van Swygenhoven H, Victoria M (2002) Nanocrystalline electrodeposited Ni: microstructure and tensile properties. Acta Mater 50:3957–3970CrossRef
5.
go back to reference Karimpoor AA, Erb U, Aust KT, Palumbo G (2003) High strength nanocrystalline cobalt with high tensile ductility. Scripta Mater 49:651–656CrossRef Karimpoor AA, Erb U, Aust KT, Palumbo G (2003) High strength nanocrystalline cobalt with high tensile ductility. Scripta Mater 49:651–656CrossRef
6.
go back to reference Humphrey RT, Jankowski AF (2011) Strain-rate sensitivity of strength in macro-to-micro-to-nano crystalline nickel. Surf Coat Tech 206:1845–1849CrossRef Humphrey RT, Jankowski AF (2011) Strain-rate sensitivity of strength in macro-to-micro-to-nano crystalline nickel. Surf Coat Tech 206:1845–1849CrossRef
7.
go back to reference Jia D, Ramesh KT, Ma E (2003) Effect of nanocrystalline and ultrafine grain sizes on constitutive behaviors and shear bands in iron. Acta Mater 51:3495–3509CrossRef Jia D, Ramesh KT, Ma E (2003) Effect of nanocrystalline and ultrafine grain sizes on constitutive behaviors and shear bands in iron. Acta Mater 51:3495–3509CrossRef
8.
go back to reference Zhou JQ, Zhu RT, Zhang ZZ (2008) Constitutive model for the mechanical behaviors of bcc and fcc nanocrystalline metals over a wide strain rate range. Mater Sci Eng, A 480:419–427CrossRef Zhou JQ, Zhu RT, Zhang ZZ (2008) Constitutive model for the mechanical behaviors of bcc and fcc nanocrystalline metals over a wide strain rate range. Mater Sci Eng, A 480:419–427CrossRef
9.
go back to reference Ivanisenko Y, Werz T, Minkow A, Lohmiller J, Gruber PA, Kobler A, Kurmanaeva L, Fecht HJ (2013) Observation of shear band formation in nanocrystalline Pd–Au alloy during in situ SEM compression testing. J Mater Sci 48:6841–6847CrossRef Ivanisenko Y, Werz T, Minkow A, Lohmiller J, Gruber PA, Kobler A, Kurmanaeva L, Fecht HJ (2013) Observation of shear band formation in nanocrystalline Pd–Au alloy during in situ SEM compression testing. J Mater Sci 48:6841–6847CrossRef
10.
go back to reference Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Kock CC, Trociewitz UP, Han K (2005) Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater 53:1521–1533CrossRef Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Kock CC, Trociewitz UP, Han K (2005) Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater 53:1521–1533CrossRef
11.
go back to reference Zhu RT, Zhou JQ, Jiang H, Zhang DS (2010) Strain localization of fully dense nanocrystallie Ni sheet. J Mater Sci 45:759–764CrossRef Zhu RT, Zhou JQ, Jiang H, Zhang DS (2010) Strain localization of fully dense nanocrystallie Ni sheet. J Mater Sci 45:759–764CrossRef
12.
go back to reference Chan T, Zhou Y, Brooks I, Palumbo G, Erb U (2014) Localized strain and heat generation during plastic deformation in nanocrystalline Ni and Ni–Fe. J Mater Sci 49:3847–3859CrossRef Chan T, Zhou Y, Brooks I, Palumbo G, Erb U (2014) Localized strain and heat generation during plastic deformation in nanocrystalline Ni and Ni–Fe. J Mater Sci 49:3847–3859CrossRef
13.
go back to reference Yoo SH, Sudarshan TS, Sethuram K (1999) Consolidation and high strain rate mechanical behavior of nanocrystalline tantalum powder. Nanostruct Mater 12:23–28CrossRef Yoo SH, Sudarshan TS, Sethuram K (1999) Consolidation and high strain rate mechanical behavior of nanocrystalline tantalum powder. Nanostruct Mater 12:23–28CrossRef
14.
go back to reference Zhu RT, Zhang XX, Li YF, Zhou JQ (2013) Impact behavior and constitutive model of nanocrystalline Ni under high strain rate loading. Mater Des 49:426–432CrossRef Zhu RT, Zhang XX, Li YF, Zhou JQ (2013) Impact behavior and constitutive model of nanocrystalline Ni under high strain rate loading. Mater Des 49:426–432CrossRef
15.
go back to reference Nyakiti LO, Jankowski AF (2010) Characterization of strain rate sensitivity and grain boundary structure in nanocrystalline gold–copper alloys. Metall Mater Trans A 41:838–847CrossRef Nyakiti LO, Jankowski AF (2010) Characterization of strain rate sensitivity and grain boundary structure in nanocrystalline gold–copper alloys. Metall Mater Trans A 41:838–847CrossRef
16.
go back to reference Wu TW, Doerner MF, Oliver WC, Pharr GM, Brotzen FR (1990) Thin film stress and mechanical properties II. Mater Res Soc Symp Proc 188:p191CrossRef Wu TW, Doerner MF, Oliver WC, Pharr GM, Brotzen FR (1990) Thin film stress and mechanical properties II. Mater Res Soc Symp Proc 188:p191CrossRef
17.
go back to reference Barletta M, Gisario A, Lusvarghi L, Bolelli G, Rubino G (2008) On the combined use of scratch tests and CLA profilometry for the characterization of polyester powder coating: influence of scratch load and speed. Appl Surf Sci 254:7198–7214CrossRef Barletta M, Gisario A, Lusvarghi L, Bolelli G, Rubino G (2008) On the combined use of scratch tests and CLA profilometry for the characterization of polyester powder coating: influence of scratch load and speed. Appl Surf Sci 254:7198–7214CrossRef
18.
go back to reference Conrad H (2003) Grain size dependence of the plastic deformation kinetics in Cu. Mater Sci Eng A 341:216–228CrossRef Conrad H (2003) Grain size dependence of the plastic deformation kinetics in Cu. Mater Sci Eng A 341:216–228CrossRef
19.
go back to reference Asaro RJ, Suresh S (2005) Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater 53:3369–3382CrossRef Asaro RJ, Suresh S (2005) Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater 53:3369–3382CrossRef
20.
go back to reference Zhou JQ, Li ZH, Zhu RT, Li YL, Zhang ZZ (2008) A mixtures-based model for the grain size dependent mechanical behavior of nanocrystalline materials. J Mater Process Tech 197:325–336CrossRef Zhou JQ, Li ZH, Zhu RT, Li YL, Zhang ZZ (2008) A mixtures-based model for the grain size dependent mechanical behavior of nanocrystalline materials. J Mater Process Tech 197:325–336CrossRef
Metadata
Title
Strain-rate sensitivity of scratch hardness and deformation mechanism in nanocrystalline Ni under micro-scratch testing
Authors
Rongtao Zhu
Yanfeng Li
Xinxi Zhang
Jianqiu Zhou
Publication date
18-03-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9890-y

Other articles of this Issue 12/2016

Journal of Materials Science 12/2016 Go to the issue

Premium Partners