Skip to main content
Top
Published in: Journal of Materials Science 12/2016

16-03-2016 | Original Paper

Biomimetic jellyfish-like PVA/graphene oxide nanocomposite hydrogels with anisotropic and pH-responsive mechanical properties

Authors: Xin Peng, Changcheng He, Jiaqi Liu, Huiliang Wang

Published in: Journal of Materials Science | Issue 12/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Jellyfish mesogloea with a well-developed anisotropic microstructure exhibits excellent and pH-responsive mechanical properties. It remains a great challenge to fabricate hydrogels mimicking the hierarchical structures and intriguing properties of biological hydrogels. Here we report the fabrication of a biomimetic jellyfish-like polyvinyl alcohol/graphene oxide (PVA/GO) nanocomposite hydrogel through a convenient and effective directional freezing–thawing technique. The resulting hydrogels show microstructures, water contents, and mechanical properties very similar to those of jellyfish mesogloea. Free-standing PVA/GO hydrogels with extremely high water contents (97–99 wt%) are obtained. The hydrogels show anisotropic porous structures consisted of microsized fibers and lamellae. The hydrogels exhibit high tensile and compressive strengths, up to 0.17 MPa and more than 2 MPa, respectively. In addition, anisotropic tensile mechanical properties are also observed. More interestingly, the PVA/GO nanocomposite hydrogels exhibit pH-responsive mechanical properties, which become weaker when swollen in acidic and basic solutions. Jellyfish-like structure that can mimic the swimming style of jellyfish is constructed with the PVA/GO nanocomposite hydrogel. This study might provide new idea for designing and fabricating novel biological or bio-inspired hydrogels for various applications in biomedical, industrial, and soft robotics fields.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Tanaka Y, Gong JP, Osada Y (2005) Novel hydrogels with excellent mechanical performance. Prog Polym Sci 30(1):1–9CrossRef Tanaka Y, Gong JP, Osada Y (2005) Novel hydrogels with excellent mechanical performance. Prog Polym Sci 30(1):1–9CrossRef
2.
go back to reference Naficy S, Brown HR, Razal JM, Spinks GM, Whitten PG (2011) Progress toward robust polymer hydrogels. Aust J Chem 64(8):1007–1025CrossRef Naficy S, Brown HR, Razal JM, Spinks GM, Whitten PG (2011) Progress toward robust polymer hydrogels. Aust J Chem 64(8):1007–1025CrossRef
3.
go back to reference Peak CW, Wilker JJ, Schmidt G (2013) A review on tough and sticky hydrogels. Colloid Polym Sci 291(9):2031–2047CrossRef Peak CW, Wilker JJ, Schmidt G (2013) A review on tough and sticky hydrogels. Colloid Polym Sci 291(9):2031–2047CrossRef
4.
go back to reference Zhao XH (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10(5):672–687CrossRef Zhao XH (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10(5):672–687CrossRef
5.
go back to reference Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19(12):1622–1627CrossRef Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19(12):1622–1627CrossRef
6.
go back to reference Song GS, Zhang L, He CC, Fang DC, Whitten PG, Wang HL (2013) Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 46(18):7423–7435CrossRef Song GS, Zhang L, He CC, Fang DC, Whitten PG, Wang HL (2013) Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 46(18):7423–7435CrossRef
7.
go back to reference Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489(7414):133–136CrossRef Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489(7414):133–136CrossRef
8.
go back to reference Dai X, Zhang Y, Gao L, Bai T, Wang W, Cui Y, Liu W (2015) A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv Mater 27(23):3566–3571CrossRef Dai X, Zhang Y, Gao L, Bai T, Wang W, Cui Y, Liu W (2015) A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv Mater 27(23):3566–3571CrossRef
9.
go back to reference Aizenberg J, Fratzl P (2009) Biological and biomimetic materials. Adv Mater 21(4):387–388CrossRef Aizenberg J, Fratzl P (2009) Biological and biomimetic materials. Adv Mater 21(4):387–388CrossRef
10.
go back to reference Hsieh YHP, Leong FM, Rudloe J (2001) Jellyfish as food. Hydrobiologia 451(1–3):11–17CrossRef Hsieh YHP, Leong FM, Rudloe J (2001) Jellyfish as food. Hydrobiologia 451(1–3):11–17CrossRef
11.
go back to reference Anseth KS, Bowman CN, BrannonPeppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657CrossRef Anseth KS, Bowman CN, BrannonPeppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657CrossRef
12.
go back to reference Biswas A, Bayer IS, Zhao H, Wang T, Watanabe F, Biris AS (2010) Design and synthesis of biomimetic multicomponent all-bone-minerals bionanocomposites. Biomacromolecules 11(10):2545–2549CrossRef Biswas A, Bayer IS, Zhao H, Wang T, Watanabe F, Biris AS (2010) Design and synthesis of biomimetic multicomponent all-bone-minerals bionanocomposites. Biomacromolecules 11(10):2545–2549CrossRef
13.
go back to reference Hachet E, Van Den Berghe H, Bayma E, Block MR, Auzély-Velty R (2012) Design of biomimetic cell-interactive substrates using hyaluronic acid hydrogels with tunable mechanical properties. Biomacromolecules 13(6):1818–1827CrossRef Hachet E, Van Den Berghe H, Bayma E, Block MR, Auzély-Velty R (2012) Design of biomimetic cell-interactive substrates using hyaluronic acid hydrogels with tunable mechanical properties. Biomacromolecules 13(6):1818–1827CrossRef
14.
go back to reference Nawroth JC, Lee H, Feinberg AW, Ripplinger CM, McCain ML, Grosberg A, Dabiri JO, Parker KK (2012) A tissue-engineered jellyfish with biomimetic propulsion. Nat Biotech 30(8):792–797CrossRef Nawroth JC, Lee H, Feinberg AW, Ripplinger CM, McCain ML, Grosberg A, Dabiri JO, Parker KK (2012) A tissue-engineered jellyfish with biomimetic propulsion. Nat Biotech 30(8):792–797CrossRef
15.
16.
go back to reference Zhu JT, Wang XZ, He CC, Wang HL (2012) Mechanical properties, anisotropic swelling behaviours and structures of jellyfish mesogloea. J Mech Behav Biomed Mater 6:63–73CrossRef Zhu JT, Wang XZ, He CC, Wang HL (2012) Mechanical properties, anisotropic swelling behaviours and structures of jellyfish mesogloea. J Mech Behav Biomed Mater 6:63–73CrossRef
17.
go back to reference Wang XZ, Wang HL, Brown HR (2011) Jellyfish gel and its hybrid hydrogels with high mechanical strength. Soft Matter 7(1):211–219CrossRef Wang XZ, Wang HL, Brown HR (2011) Jellyfish gel and its hybrid hydrogels with high mechanical strength. Soft Matter 7(1):211–219CrossRef
18.
go back to reference Meyers MA, Chen PY, Lopez MI, Seki Y, Lin AYM (2011) Biological materials: a materials science approach. J Mech Behav Biomed Mater 4(5):626–657CrossRef Meyers MA, Chen PY, Lopez MI, Seki Y, Lin AYM (2011) Biological materials: a materials science approach. J Mech Behav Biomed Mater 4(5):626–657CrossRef
19.
go back to reference Morinaga Y, Iwai K, Tomita H, Takaya Y, Naraoka T, Matsue H (2010) Chemical nature of a new antihypertensive peptide derived from jellyfish. Food Sci Technol Res 16(4):333–340CrossRef Morinaga Y, Iwai K, Tomita H, Takaya Y, Naraoka T, Matsue H (2010) Chemical nature of a new antihypertensive peptide derived from jellyfish. Food Sci Technol Res 16(4):333–340CrossRef
20.
go back to reference Zhang L, Zhao J, Zhu JT, He CC, Wang HL (2012) Anisotropic tough poly(vinyl alcohol) hydrogels. Soft Matter 8(40):10439–10447CrossRef Zhang L, Zhao J, Zhu JT, He CC, Wang HL (2012) Anisotropic tough poly(vinyl alcohol) hydrogels. Soft Matter 8(40):10439–10447CrossRef
21.
go back to reference Chen ML, Zhu JT, Qi GJ, He CC, Wang HL (2012) Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Mater Lett 89:104–107CrossRef Chen ML, Zhu JT, Qi GJ, He CC, Wang HL (2012) Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Mater Lett 89:104–107CrossRef
22.
go back to reference Zhao D, Zhu JT, Zhu ZC, Song G, Wang HL (2014) Anisotropic hierarchical porous hydrogels with unique water loss/absorption and mechanical properties. RSC Adv 4(57):30308–30314CrossRef Zhao D, Zhu JT, Zhu ZC, Song G, Wang HL (2014) Anisotropic hierarchical porous hydrogels with unique water loss/absorption and mechanical properties. RSC Adv 4(57):30308–30314CrossRef
23.
go back to reference Zhu JT, Wang JW, Liu QY, Liu YH, Wang L, He CC, Wang HL (2013) Anisotropic tough poly(2-hydroxyethyl methacrylate) hydrogels fabricated by directional freezing redox polymerization. J Mater Chem B 1(7):978–986CrossRef Zhu JT, Wang JW, Liu QY, Liu YH, Wang L, He CC, Wang HL (2013) Anisotropic tough poly(2-hydroxyethyl methacrylate) hydrogels fabricated by directional freezing redox polymerization. J Mater Chem B 1(7):978–986CrossRef
24.
go back to reference Mao Q, Shi SJ, Wang HL (2015) Biomimetic nanowire structured hydrogels as highly active and recyclable catalyst carriers. ACS Sustain Chem Eng 3(9):1915–1924CrossRef Mao Q, Shi SJ, Wang HL (2015) Biomimetic nanowire structured hydrogels as highly active and recyclable catalyst carriers. ACS Sustain Chem Eng 3(9):1915–1924CrossRef
25.
go back to reference Li D, Kaner RB (2008) Graphene-based materials. Science 320(5880):1170–1171CrossRef Li D, Kaner RB (2008) Graphene-based materials. Science 320(5880):1170–1171CrossRef
26.
go back to reference Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530CrossRef Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530CrossRef
27.
go back to reference Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375CrossRef Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375CrossRef
28.
go back to reference Cheng C, Li D (2013) Solvated graphenes: an emerging class of functional soft materials. Adv Mater 25(1):13–30CrossRef Cheng C, Li D (2013) Solvated graphenes: an emerging class of functional soft materials. Adv Mater 25(1):13–30CrossRef
29.
go back to reference Liu JQ, Chen CF, He CC, Zhao L, Yang XJ, Wang HL (2012) Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano 6(9):8194–8202CrossRef Liu JQ, Chen CF, He CC, Zhao L, Yang XJ, Wang HL (2012) Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano 6(9):8194–8202CrossRef
30.
go back to reference Liu JQ, Song GS, He CC, Wang HL (2013) Self-healing in tough graphene oxide composite hydrogels. Macromol Rapid Commun 34(12):1002–1007CrossRef Liu JQ, Song GS, He CC, Wang HL (2013) Self-healing in tough graphene oxide composite hydrogels. Macromol Rapid Commun 34(12):1002–1007CrossRef
31.
go back to reference Bai H, Li C, Wang X, Shi G (2010) A pH-sensitive graphene oxide composite hydrogel. Chem Commun 46(14):2376–2378CrossRef Bai H, Li C, Wang X, Shi G (2010) A pH-sensitive graphene oxide composite hydrogel. Chem Commun 46(14):2376–2378CrossRef
32.
go back to reference Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y (2011) High strength graphene oxide/polyvinyl alcohol composite hydrogels. J Mater Chem 21(28):10399–10406CrossRef Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y (2011) High strength graphene oxide/polyvinyl alcohol composite hydrogels. J Mater Chem 21(28):10399–10406CrossRef
33.
go back to reference Huang Y, Zhang M, Ruan W (2014) High-water-content graphene oxide/polyvinyl alcohol hydrogel with excellent mechanical properties. J Mater Chem A 2(27):10508–10515CrossRef Huang Y, Zhang M, Ruan W (2014) High-water-content graphene oxide/polyvinyl alcohol hydrogel with excellent mechanical properties. J Mater Chem A 2(27):10508–10515CrossRef
34.
go back to reference Du G, Nie L, Gao G, Sun Y, Hou R, Zhang H, Chen T, Fu J (2015) Tough and biocompatible hydrogels based on in situ interpenetrating networks of dithiol-connected graphene oxide and poly(vinyl alcohol). ACS Appl Mater Interfaces 7(5):3003–3008CrossRef Du G, Nie L, Gao G, Sun Y, Hou R, Zhang H, Chen T, Fu J (2015) Tough and biocompatible hydrogels based on in situ interpenetrating networks of dithiol-connected graphene oxide and poly(vinyl alcohol). ACS Appl Mater Interfaces 7(5):3003–3008CrossRef
35.
go back to reference Deville S (2008) Freeze-casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater 10(3):155–169CrossRef Deville S (2008) Freeze-casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater 10(3):155–169CrossRef
36.
go back to reference Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311(5760):515–518CrossRef Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311(5760):515–518CrossRef
37.
go back to reference Weadock K, Olson RM, Silver FH (1983) Evaluation of collagen crosslinking techniques. Biomat Med Dev Art Org 11(4):293–318 Weadock K, Olson RM, Silver FH (1983) Evaluation of collagen crosslinking techniques. Biomat Med Dev Art Org 11(4):293–318
38.
go back to reference Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105CrossRef Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105CrossRef
Metadata
Title
Biomimetic jellyfish-like PVA/graphene oxide nanocomposite hydrogels with anisotropic and pH-responsive mechanical properties
Authors
Xin Peng
Changcheng He
Jiaqi Liu
Huiliang Wang
Publication date
16-03-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9891-x

Other articles of this Issue 12/2016

Journal of Materials Science 12/2016 Go to the issue

Premium Partners