Skip to main content
Top
Published in: Journal of Materials Science 12/2016

24-03-2016 | Original Paper

The influence of slightly and highly soluble carbonate salts on phase relations in hydrated calcium aluminate cements

Authors: Guillermo Puerta-Falla, Magdalena Balonis, Gwenn Le Saout, Aditya Kumar, Melanie Rivera, Gabriel Falzone, Narayanan Neithalath, Gaurav Sant

Published in: Journal of Materials Science | Issue 12/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The addition of slightly (CaCO3) and highly soluble (Na2CO3) carbonate salts is expected to favor the formation of carboaluminate phases in hydrated calcium aluminate cements (CACs). A multi-method approach including X-ray diffraction, thermogravimetric analysis, and thermodynamic calculations is applied to highlight that the “conversion phenomena” in CACs cannot be mitigated by the formation of carboaluminate phases (monocarboaluminate: Mc and hemicarboaluminate: Hc) which are anticipated to form following the addition of carbonate salts. Here, carboaluminate phase formation is shown to depend on three factors: (1) water availability, (2) carbonate content of the salts, and their ability to mobilize CO3 2− species in solution, and (3) lime content associated with the carbonate salt. The latter two factors are linked to the composition and solubility of the carbonate agent. It is concluded that limestone (CaCO3), despite being a source of calcium and carbonate species, contributes only slightly to carboaluminate phase formation due to its low solubility and slow dissolution rate. Soluble carbonate salts (Na2CO3) fail to boost carboaluminate phase formation as the availability of Ca2+ ions and water are limiting. Detailed thermodynamic calculations are used to elucidate conditions that affect the formation of carboaluminate phases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Standard cement chemistry notation is used. As per this simplified notation: C = CaO, A = Al2O3, F = Fe2O3, S = SiO2, CS = CaSO4·2H2O, H = H2O, and \( \overline{\text{C}} = {\text{CO}}_{2} \).
 
2
Certain commercial materials and equipment are identified to adequately specify experimental procedures. In no case does, such identification implies recommendation or endorsement by University of California, Los Angeles, École des Mines d’Alès, or Arizona State University, nor does it imply that the items identified are necessarily the best available for the purpose.
 
Literature
1.
go back to reference De Weerdt K, Ben Haha M, Le Saout G et al (2011) Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res 41(3):279–291CrossRef De Weerdt K, Ben Haha M, Le Saout G et al (2011) Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res 41(3):279–291CrossRef
2.
go back to reference Damidot D, Glasser FP (1995) Thermodynamic investigation of the CaO—Al2O3—CaSO4—CaCO3-H2O closed system at 25 °C and the influence of Na2O. Adv Cem Res 7(27):129–134CrossRef Damidot D, Glasser FP (1995) Thermodynamic investigation of the CaO—Al2O3—CaSO4—CaCO3-H2O closed system at 25 °C and the influence of Na2O. Adv Cem Res 7(27):129–134CrossRef
3.
go back to reference Damidot D, Lothenbach B, Herfort D, Glasser FP (2011) Thermodynamics and cement science. Cem Concr Res 41(7):679–695CrossRef Damidot D, Lothenbach B, Herfort D, Glasser FP (2011) Thermodynamics and cement science. Cem Concr Res 41(7):679–695CrossRef
4.
go back to reference Kumar A, Oey T, Kim S, Thomas D, Badran S, Li J, Fernandes F, Neithalath N, Sant G (2013) Simple methods to estimate the influence of limestone fillers on reaction and property evolution in cementitious materials. Cem Concr Compos 42:20–29CrossRef Kumar A, Oey T, Kim S, Thomas D, Badran S, Li J, Fernandes F, Neithalath N, Sant G (2013) Simple methods to estimate the influence of limestone fillers on reaction and property evolution in cementitious materials. Cem Concr Compos 42:20–29CrossRef
5.
go back to reference Lothenbach B, Winnefeld F (2006) Thermodynamic modelling of the hydration of Portland cement. Cem Concr Res 36(2):209–226CrossRef Lothenbach B, Winnefeld F (2006) Thermodynamic modelling of the hydration of Portland cement. Cem Concr Res 36(2):209–226CrossRef
6.
go back to reference Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38(6):848–860CrossRef Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38(6):848–860CrossRef
7.
go back to reference Matschei T (2007) Thermodynamics of cement hydration PhD diss., Aberdeen University, Aberdeen Matschei T (2007) Thermodynamics of cement hydration PhD diss., Aberdeen University, Aberdeen
8.
go back to reference Matschei T, Lothenbach B, Glasser FP (2007) The AFm phase in Portland cement. Cem Concr Res 37(2):118–130CrossRef Matschei T, Lothenbach B, Glasser FP (2007) The AFm phase in Portland cement. Cem Concr Res 37(2):118–130CrossRef
9.
go back to reference Oey T, Kumar A, Bullard JW, Neithalath N, Sant G (2013) The filler effect: the influence of filler content and surface area on cementitious reaction rates. J Am Ceram Soc 96(6):1978–1990CrossRef Oey T, Kumar A, Bullard JW, Neithalath N, Sant G (2013) The filler effect: the influence of filler content and surface area on cementitious reaction rates. J Am Ceram Soc 96(6):1978–1990CrossRef
10.
go back to reference Tomaž V, Tinta V, Gabrovšek, Kaučič V (2001) The effects of limestone addition, clinker type and fineness on properties of Portland cement. Cem Concr Res 31(1):135–139CrossRef Tomaž V, Tinta V, Gabrovšek, Kaučič V (2001) The effects of limestone addition, clinker type and fineness on properties of Portland cement. Cem Concr Res 31(1):135–139CrossRef
11.
go back to reference Tsivilis S, Chaniotakis E, Kakali G, Batis G (2002) An analysis of the properties of Portland limestone cements and concrete. Cem Concr Compos 24(3):371–378CrossRef Tsivilis S, Chaniotakis E, Kakali G, Batis G (2002) An analysis of the properties of Portland limestone cements and concrete. Cem Concr Compos 24(3):371–378CrossRef
12.
go back to reference Puerta-Falla G, Balonis M, Le Saout G, Falzone G, Zhang C, Neithalath N, Sant G (2015) Elucidating the role of the aluminous source on limestone reactivity in cementitious materials. J Am Ceram Soc 98(12):4076–4089CrossRef Puerta-Falla G, Balonis M, Le Saout G, Falzone G, Zhang C, Neithalath N, Sant G (2015) Elucidating the role of the aluminous source on limestone reactivity in cementitious materials. J Am Ceram Soc 98(12):4076–4089CrossRef
13.
go back to reference Falzone G, Balonis M, Sant G (2015) X-AFm stabilization as a mechanism of bypassing conversion phenomena in calcium aluminate cements. Cem Concr Res 72:54–68CrossRef Falzone G, Balonis M, Sant G (2015) X-AFm stabilization as a mechanism of bypassing conversion phenomena in calcium aluminate cements. Cem Concr Res 72:54–68CrossRef
14.
go back to reference Lothenbach B, Pelletier-Chaignat L, Winnefeld F (2012) Stability in the system CaO–Al2O3–H2O. Cem Concr Res 42(12):1621–1634CrossRef Lothenbach B, Pelletier-Chaignat L, Winnefeld F (2012) Stability in the system CaO–Al2O3–H2O. Cem Concr Res 42(12):1621–1634CrossRef
15.
go back to reference Scrivener KL, Capmas A (1998) Lea’s Chemistry of cement and concrete calcium aluminate cements, Chapter 13, In: Hewlett PC (ed), Wiley, New York Scrivener KL, Capmas A (1998) Lea’s Chemistry of cement and concrete calcium aluminate cements, Chapter 13, In: Hewlett PC (ed), Wiley, New York
16.
go back to reference Scrivener KL, Cabiron JL, Letourneux R (1999) High-performance concretes from calcium aluminate cements. Cem Concr Res 29(8):1215–1223CrossRef Scrivener KL, Cabiron JL, Letourneux R (1999) High-performance concretes from calcium aluminate cements. Cem Concr Res 29(8):1215–1223CrossRef
17.
go back to reference Puerta-Falla G, Kumar A, Gomez-Zamorano L, Bauchy M, Neithalath N, Sant G (2015) The influence of filler type and surface area on the hydration rates of calcium aluminate cement. Constr Build Mater 96:657–665CrossRef Puerta-Falla G, Kumar A, Gomez-Zamorano L, Bauchy M, Neithalath N, Sant G (2015) The influence of filler type and surface area on the hydration rates of calcium aluminate cement. Constr Build Mater 96:657–665CrossRef
18.
go back to reference Klaus SR, Neubauer J, Goetz-Neunhoeffer F (2013) Hydration kinetics of CA2 and CA—investigations performed on a synthetic calcium aluminate cement. Cem Concr Res 43:62–69CrossRef Klaus SR, Neubauer J, Goetz-Neunhoeffer F (2013) Hydration kinetics of CA2 and CA—investigations performed on a synthetic calcium aluminate cement. Cem Concr Res 43:62–69CrossRef
19.
20.
go back to reference Mangabhai RJ, Glasser FP (2001) Calcium Aluminate Cements. IOM communications, London Mangabhai RJ, Glasser FP (2001) Calcium Aluminate Cements. IOM communications, London
21.
go back to reference Shahwana R, Barnes P, Bensted J, Turrillas X (1994) Conversion of calcium aluminate cement hydrates re-examined with synchrotron energy-dispersive diffraction J Mater Sci lett 13(17):1232–1234 Shahwana R, Barnes P, Bensted J, Turrillas X (1994) Conversion of calcium aluminate cement hydrates re-examined with synchrotron energy-dispersive diffraction J Mater Sci lett 13(17):1232–1234
22.
go back to reference Ukrainczyk N, Šipušić J, Dabić P, Matusinović T (2008) Microcalorimetric study on calcium aluminate cement hydration. 13th International conference on materials, processes, friction and wear, p 382–388 Ukrainczyk N, Šipušić J, Dabić P, Matusinović T (2008) Microcalorimetric study on calcium aluminate cement hydration. 13th International conference on materials, processes, friction and wear, p 382–388
23.
go back to reference Kuzel HJ (1996) Initial hydration reactions and mechanisms of delayed ettringite formation in Portland cements. Cem Concr Compos 18(3):195–203CrossRef Kuzel HJ (1996) Initial hydration reactions and mechanisms of delayed ettringite formation in Portland cements. Cem Concr Compos 18(3):195–203CrossRef
24.
go back to reference Luz AP, Pandolfelli VC (2012) CaCO3 addition effect on the hydration and mechanical strength evolution of calcium aluminate cement for endodontic applications. Ceram Int 38(2):1417–1425CrossRef Luz AP, Pandolfelli VC (2012) CaCO3 addition effect on the hydration and mechanical strength evolution of calcium aluminate cement for endodontic applications. Ceram Int 38(2):1417–1425CrossRef
25.
go back to reference ASTM (International and American Society for Testing & Materials) (2004) Annual book of ASTM standards, American Society for Testing & Materials, USA ASTM (International and American Society for Testing & Materials) (2004) Annual book of ASTM standards, American Society for Testing & Materials, USA
29.
go back to reference Le Saout G, Kocaba V, Scrivener KL (2011) Application of the Rietveld method to the analysis of anhydrous cement. Cem Concr Res 41:133–148CrossRef Le Saout G, Kocaba V, Scrivener KL (2011) Application of the Rietveld method to the analysis of anhydrous cement. Cem Concr Res 41:133–148CrossRef
31.
go back to reference Myers RJ, Lothenbach B, Bernal SA, Provis JL (2015) Thermodynamic modelling of alkali-activated slag cements. Appl Geochem 61:233–247CrossRef Myers RJ, Lothenbach B, Bernal SA, Provis JL (2015) Thermodynamic modelling of alkali-activated slag cements. Appl Geochem 61:233–247CrossRef
32.
go back to reference Martin LHJ, Winnefeld F, Müller CJ, Lothenbach B (2015) Contribution of limestone to the hydration of calcium sulfoaluminate cement. Cem Concr Compos 62:204–211CrossRef Martin LHJ, Winnefeld F, Müller CJ, Lothenbach B (2015) Contribution of limestone to the hydration of calcium sulfoaluminate cement. Cem Concr Compos 62:204–211CrossRef
33.
go back to reference Thomas JJ, Jennings HM (1998) Free-energy-based model of chemical equilibria in the CaO–SiO2-H2O system. J Am Ceram Soc 81(3):606–612CrossRef Thomas JJ, Jennings HM (1998) Free-energy-based model of chemical equilibria in the CaO–SiO2-H2O system. J Am Ceram Soc 81(3):606–612CrossRef
36.
go back to reference Haha MB, Lothenbach B, Le Saout G, Winnefeld F (2012) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: effect of Al2O3. Cem Concr Res 42(1):74–83CrossRef Haha MB, Lothenbach B, Le Saout G, Winnefeld F (2012) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: effect of Al2O3. Cem Concr Res 42(1):74–83CrossRef
37.
go back to reference Pelletier-Chaignat L, Winnefeld F, Lothenbach B, Müller CJ (2012) Beneficial use of limestone filler with calcium sulphoaluminate cement . Constr Build Mater 26(1):619–627CrossRef Pelletier-Chaignat L, Winnefeld F, Lothenbach B, Müller CJ (2012) Beneficial use of limestone filler with calcium sulphoaluminate cement . Constr Build Mater 26(1):619–627CrossRef
39.
go back to reference Önder K, Yaman IO, Tokyay M (2013) Compressive strength development of calcium aluminate cement–GGBFS blends. Cem Concr Compos 35(1):163–170CrossRef Önder K, Yaman IO, Tokyay M (2013) Compressive strength development of calcium aluminate cement–GGBFS blends. Cem Concr Compos 35(1):163–170CrossRef
40.
go back to reference Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38(6):848–860CrossRef Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38(6):848–860CrossRef
41.
go back to reference Johnson DR, Robb WA (1973) Gaylussite: thermal properties by simultaneous thermal analysis. Am Mineral 58:778–784 Johnson DR, Robb WA (1973) Gaylussite: thermal properties by simultaneous thermal analysis. Am Mineral 58:778–784
42.
go back to reference Hartmant M, Trnka O, Vesely V, Karel Svodoba (2001) Thermal dehydration of the sodium carbonate hydrates. Chem Eng Commun 185(1):1–16CrossRef Hartmant M, Trnka O, Vesely V, Karel Svodoba (2001) Thermal dehydration of the sodium carbonate hydrates. Chem Eng Commun 185(1):1–16CrossRef
43.
go back to reference Steudel A, Mehl D, Emmerich K (2013) Simultaneous thermal analysis of different bentonite–sodium carbonate systems: an attempt to distinguish alkali-activated bentonites from raw materials. Clay Miner 48(1):117–128CrossRef Steudel A, Mehl D, Emmerich K (2013) Simultaneous thermal analysis of different bentonite–sodium carbonate systems: an attempt to distinguish alkali-activated bentonites from raw materials. Clay Miner 48(1):117–128CrossRef
44.
go back to reference Matschei T, Lothenbach B, Glasser FP (2007) The role of calcium carbonate in cement hydration. Cem Concr Res 37(4):551–558CrossRef Matschei T, Lothenbach B, Glasser FP (2007) The role of calcium carbonate in cement hydration. Cem Concr Res 37(4):551–558CrossRef
45.
go back to reference Baquerizo LG, Matschei T, Scrivener KL, Saeidpour M, Wadsö L (2015) Hydration states of AFm cement phases. Cem Concr Res 73:143–157CrossRef Baquerizo LG, Matschei T, Scrivener KL, Saeidpour M, Wadsö L (2015) Hydration states of AFm cement phases. Cem Concr Res 73:143–157CrossRef
46.
go back to reference Baquerizo LG (2015) Impact of water activity on the mineralogy of hydrated cement Ph.D. diss. École Polytechnique Fédérale de Lausanne, Lausanne Baquerizo LG (2015) Impact of water activity on the mineralogy of hydrated cement Ph.D. diss. École Polytechnique Fédérale de Lausanne, Lausanne
Metadata
Title
The influence of slightly and highly soluble carbonate salts on phase relations in hydrated calcium aluminate cements
Authors
Guillermo Puerta-Falla
Magdalena Balonis
Gwenn Le Saout
Aditya Kumar
Melanie Rivera
Gabriel Falzone
Narayanan Neithalath
Gaurav Sant
Publication date
24-03-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9912-9

Other articles of this Issue 12/2016

Journal of Materials Science 12/2016 Go to the issue

Premium Partners