Skip to main content
Top
Published in: Journal of Polymer Research 1/2014

01-01-2014 | Original Paper

Preparation and characterization of maleated polylactide-functionalized graphite oxide nanocomposites

Authors: Yeh Wang, Chi-S. Lin

Published in: Journal of Polymer Research | Issue 1/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Organically dispersible graphene nanosheets were fabricated by amine surfactant intercalated graphite oxide (GOAs) with ultrasonication below room temperature. Subsequently, GOAs filled nanocomposites of polylactide grafted with maleic anhydride (PLAgMA) were prepared directly by solution blending. The compatibilization effects provided by the functionalization of both constituents and their influence on the structure and properties of the final nanocomposites in different compositions were investigated. The interactions and structural morphology of the nanocomposites were examined by Fourier transform infrared spectroscopy, X-ray diffraction, scanning and transmission electron microscopy. Thermal, dynamic-mechanical and conductive properties of these nanocomposites were investigated as a function of GOAs content. The detailed morphological and X-ray diffraction results revealed that the degree of GOAs dispersion enhanced with maleated PLA. Study of the dynamic-mechanical properties showed that both the storage modulus G’ and the loss modulus G” are very sensitive to the microstructure of the nanocomposite. The thermal properties of the nanocomposites were significantly influenced by the GOAs content due to the shielding and nucleating effect of exfoliated layers. Both the thermal and electrical conductivities showed substantial improvements with increasing GOAs content. The overall results pointed to the compatibilization synergy of GO functionalization and PLA maleation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ak M, Wibowo A, Misra M, Drzal LT (2004) Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos A 35:363–370CrossRef Ak M, Wibowo A, Misra M, Drzal LT (2004) Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos A 35:363–370CrossRef
2.
go back to reference Petersen K, Nielsen PV, Olsen MB (2001) Physical and mechanical properties of biobased materials starch, polylactate and polyhydroxybutyrate. Starch 53:356–361CrossRef Petersen K, Nielsen PV, Olsen MB (2001) Physical and mechanical properties of biobased materials starch, polylactate and polyhydroxybutyrate. Starch 53:356–361CrossRef
3.
go back to reference Bastioli C (2001) Global status of the production of biobased packaging materials. Starch 53:351–355CrossRef Bastioli C (2001) Global status of the production of biobased packaging materials. Starch 53:351–355CrossRef
4.
go back to reference Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152CrossRef Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152CrossRef
5.
go back to reference Vert M, Schwarch G, Coudane J (1995) Present and future of PLA polymers. J Macromol Sci Part A 32:787–796CrossRef Vert M, Schwarch G, Coudane J (1995) Present and future of PLA polymers. J Macromol Sci Part A 32:787–796CrossRef
6.
go back to reference Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 66:1507–1513CrossRef Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 66:1507–1513CrossRef
7.
go back to reference Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219CrossRef Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219CrossRef
8.
go back to reference Jacobsen S, Fritz HG (1999) Plasticizing polylactide-the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310CrossRef Jacobsen S, Fritz HG (1999) Plasticizing polylactide-the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310CrossRef
9.
go back to reference Auras RA, Lim LT, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, NJ Auras RA, Lim LT, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, NJ
10.
go back to reference Ren J (ed) (2011) Biodegradable poly (lactic acid): synthesis, modification, processing and applications. Springer, Heidelberg Ren J (ed) (2011) Biodegradable poly (lactic acid): synthesis, modification, processing and applications. Springer, Heidelberg
11.
go back to reference Jiang L, Zhang JW, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48:7632–7644CrossRef Jiang L, Zhang JW, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48:7632–7644CrossRef
12.
go back to reference Yan SF, Yin JB, Yang Y, Dai ZZ, Ma J, Chen XS (2007) Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 48:1688–1694CrossRef Yan SF, Yin JB, Yang Y, Dai ZZ, Ma J, Chen XS (2007) Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 48:1688–1694CrossRef
13.
go back to reference Nakayama N, Hayashi T (2007) Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92:1255–1264CrossRef Nakayama N, Hayashi T (2007) Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92:1255–1264CrossRef
14.
go back to reference Fukuda N, Tsuji H (2005) Physical properties and enzymatic hydrolysis of poly(L-lactide)–TiO2 composites. J Appl Polym Sci 96:190–199CrossRef Fukuda N, Tsuji H (2005) Physical properties and enzymatic hydrolysis of poly(L-lactide)–TiO2 composites. J Appl Polym Sci 96:190–199CrossRef
15.
go back to reference Wei J, Chen QZ, Stevens MM, Roether JA, Boccaccini AR (2008) Biocompatibility and bioactivity of PDLLA/TiO2 and PDLLA/TiO2/Bioglass® nanocomposites. Mater Sci Eng C 28:1–10CrossRef Wei J, Chen QZ, Stevens MM, Roether JA, Boccaccini AR (2008) Biocompatibility and bioactivity of PDLLA/TiO2 and PDLLA/TiO2/Bioglass® nanocomposites. Mater Sci Eng C 28:1–10CrossRef
16.
go back to reference Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRef Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRef
17.
go back to reference Solarski S, Ferreira M, Devaux E (2008) Ageing of polylactide and polylactide nanocomposite filaments. Polym Degrad Stab 93:707–712CrossRef Solarski S, Ferreira M, Devaux E (2008) Ageing of polylactide and polylactide nanocomposite filaments. Polym Degrad Stab 93:707–712CrossRef
18.
go back to reference Hiroi R, Ray SS, Okamoto M, Shiroi T (2004) Organically modified layered titanate: a new nanofiller to improve the performance of biodegradable polylactide. Macromol Rapid Commun 25:1359–1364CrossRef Hiroi R, Ray SS, Okamoto M, Shiroi T (2004) Organically modified layered titanate: a new nanofiller to improve the performance of biodegradable polylactide. Macromol Rapid Commun 25:1359–1364CrossRef
19.
go back to reference Nam JY, Ray SS, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131CrossRef Nam JY, Ray SS, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131CrossRef
20.
go back to reference Xiao YM, Li DX, Fan HS, Li XD, Gu ZW, Zhang XD (2007) Preparation of nano-HA/PLA composite by modified-PLA for controlling the growth of HA crystals. Mater Lett 61:59–62CrossRef Xiao YM, Li DX, Fan HS, Li XD, Gu ZW, Zhang XD (2007) Preparation of nano-HA/PLA composite by modified-PLA for controlling the growth of HA crystals. Mater Lett 61:59–62CrossRef
21.
go back to reference Russias J, Saiz E, Nalla RK, Gryn K, Ritchie RO, Tomsia AP (2006) Fabrication and mechanical properties of PLA/HA composites: a study of in vitro degradation. Mater Sci Eng C 26:1289–1295CrossRef Russias J, Saiz E, Nalla RK, Gryn K, Ritchie RO, Tomsia AP (2006) Fabrication and mechanical properties of PLA/HA composites: a study of in vitro degradation. Mater Sci Eng C 26:1289–1295CrossRef
22.
go back to reference Xu XL, Chen XS, Liu AX, Hong ZK, Jing XB (2007) Electrospun poly(l-lactide)-grafted hydroxyapatite/poly(l-lactide) nanocomposite fibers. Eur Polym J 43:3187–3196CrossRef Xu XL, Chen XS, Liu AX, Hong ZK, Jing XB (2007) Electrospun poly(l-lactide)-grafted hydroxyapatite/poly(l-lactide) nanocomposite fibers. Eur Polym J 43:3187–3196CrossRef
23.
go back to reference Goffin AL, Duquesne E, Moins S, Alexandre M, Dubois P (2007) New organic–inorganic nanohybrids via ring opening polymerization of (di)lactones initiated by functionalized polyhedral oligomeric silsesquioxane. Eur Polym J 43:4103–4113CrossRef Goffin AL, Duquesne E, Moins S, Alexandre M, Dubois P (2007) New organic–inorganic nanohybrids via ring opening polymerization of (di)lactones initiated by functionalized polyhedral oligomeric silsesquioxane. Eur Polym J 43:4103–4113CrossRef
24.
go back to reference Pan H, Qiu Z (2010) Biodegradable Poly(l-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules 43:1499–1506CrossRef Pan H, Qiu Z (2010) Biodegradable Poly(l-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules 43:1499–1506CrossRef
25.
go back to reference Wu CS, Liao HT (2007) Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48:4449–4458CrossRef Wu CS, Liao HT (2007) Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48:4449–4458CrossRef
26.
go back to reference Song WH, Zheng Z, Tang WL, Wang XL (2007) A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer. Polymer 48:3658–3663CrossRef Song WH, Zheng Z, Tang WL, Wang XL (2007) A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer. Polymer 48:3658–3663CrossRef
27.
go back to reference Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000–5008CrossRef Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000–5008CrossRef
28.
go back to reference Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900CrossRef Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900CrossRef
29.
go back to reference Kim I-H, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci B 48:850–858CrossRef Kim I-H, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci B 48:850–858CrossRef
30.
go back to reference Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48:3834–3839CrossRef Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48:3834–3839CrossRef
31.
go back to reference Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575CrossRef Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575CrossRef
33.
go back to reference Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef
34.
go back to reference Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ (2007) Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos Sci Technol 67:2528–2534CrossRef Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ (2007) Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos Sci Technol 67:2528–2534CrossRef
35.
go back to reference Uhl FM, Yao Q, Nakajima H, Manias E, Wilkie CA (2005) Expandable graphite/polyamide-6 nanocomposites. Polym Degrad Stab 89:70–84CrossRef Uhl FM, Yao Q, Nakajima H, Manias E, Wilkie CA (2005) Expandable graphite/polyamide-6 nanocomposites. Polym Degrad Stab 89:70–84CrossRef
36.
go back to reference Yasmin A, Luo JJ, Daniel IM (2006) Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol 66:1182–1189CrossRef Yasmin A, Luo JJ, Daniel IM (2006) Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol 66:1182–1189CrossRef
37.
go back to reference Chen G, Weng W, Wu D, Wu C (2003) PMMA/graphite nanosheets composite and its conducting properties. Eur Polym J 39:2329–2335CrossRef Chen G, Weng W, Wu D, Wu C (2003) PMMA/graphite nanosheets composite and its conducting properties. Eur Polym J 39:2329–2335CrossRef
38.
go back to reference Kalaitzidou K, Fukushima H, Drza LT (2007) A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67:2045–2051CrossRef Kalaitzidou K, Fukushima H, Drza LT (2007) A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67:2045–2051CrossRef
39.
go back to reference Chen G, Chen X, Wang H, Wu D (2007) Dispersion of graphite nanosheets in polymer resins via masterbatch technique. J Appl Polym Sci 103:3470–3475CrossRef Chen G, Chen X, Wang H, Wu D (2007) Dispersion of graphite nanosheets in polymer resins via masterbatch technique. J Appl Polym Sci 103:3470–3475CrossRef
40.
go back to reference Deshmukh K, Khatake SM, Joshi GM (2013) Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites. J Polym Res 20:286CrossRef Deshmukh K, Khatake SM, Joshi GM (2013) Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites. J Polym Res 20:286CrossRef
41.
go back to reference Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
42.
go back to reference Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JM (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564CrossRef Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JM (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564CrossRef
43.
go back to reference Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
44.
go back to reference Bourlinos AB, Gournis, Petridis D, Szabo T, Szeri A, Dekany I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055CrossRef Bourlinos AB, Gournis, Petridis D, Szabo T, Szeri A, Dekany I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055CrossRef
45.
go back to reference Li W, Tang XZ, Zhang HB, Jiang ZG, Yu ZZ, Du XS, Mai YW (2011) Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon 49:4724–4730CrossRef Li W, Tang XZ, Zhang HB, Jiang ZG, Yu ZZ, Du XS, Mai YW (2011) Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon 49:4724–4730CrossRef
46.
go back to reference Cao Y, Feng J, Wu P (2010) Alkyl-functionalized graphene nanosheets with improved lipophilicity. Carbon 48:1683–1685CrossRef Cao Y, Feng J, Wu P (2010) Alkyl-functionalized graphene nanosheets with improved lipophilicity. Carbon 48:1683–1685CrossRef
47.
go back to reference Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) J Am Chem Soc 128:7720CrossRef Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) J Am Chem Soc 128:7720CrossRef
48.
go back to reference Bai S, Shen X, Zhu G, Xu Z, Liu Y (2011) Reversible phase transfer of graphene oxide and its use in the synthesis of graphene-based hybrid materials. Carbon 49:4563–4570CrossRef Bai S, Shen X, Zhu G, Xu Z, Liu Y (2011) Reversible phase transfer of graphene oxide and its use in the synthesis of graphene-based hybrid materials. Carbon 49:4563–4570CrossRef
49.
go back to reference Wang G, Shen X, Wang B, Yao J, Park J (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47:1359–1364CrossRef Wang G, Shen X, Wang B, Yao J, Park J (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47:1359–1364CrossRef
50.
go back to reference Park HM, Liang X, Mohanty AK, Misra M, Drzal LT (2004) Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules 37:9076–9082CrossRef Park HM, Liang X, Mohanty AK, Misra M, Drzal LT (2004) Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules 37:9076–9082CrossRef
51.
go back to reference Wang Y, Tsai HB (2012) Thermal, dynamic-mechanical, and dielectric properties of surfactant intercalated graphite oxide filled maleated polypropylene nanocomposites. J App Polym Sci 123:3154–3163CrossRef Wang Y, Tsai HB (2012) Thermal, dynamic-mechanical, and dielectric properties of surfactant intercalated graphite oxide filled maleated polypropylene nanocomposites. J App Polym Sci 123:3154–3163CrossRef
52.
go back to reference Mishra JK, Hwang KJ, Ha CS (2005) Preparation, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride modified polypropylene as a compatibilizer. Polymer 46:1995–2002CrossRef Mishra JK, Hwang KJ, Ha CS (2005) Preparation, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride modified polypropylene as a compatibilizer. Polymer 46:1995–2002CrossRef
53.
go back to reference Petersson L, Oksman K, Mathew AP (2006) Using maleic anhydride grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/layered-silicate nanocomposites. J Appl Polym Sci 102:1852–1862CrossRef Petersson L, Oksman K, Mathew AP (2006) Using maleic anhydride grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/layered-silicate nanocomposites. J Appl Polym Sci 102:1852–1862CrossRef
54.
go back to reference Zhang JF, Sun X (2004) Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules 5:1446–1451CrossRef Zhang JF, Sun X (2004) Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules 5:1446–1451CrossRef
55.
go back to reference Yuan H, Liu Z, Ren J (2009) Preparation, characterization, and foaming behavior of poly(lactic acid)/poly(butylene adipate-co-butylene terephthalate) blend. Polym Eng Sci 49:1004–1012CrossRef Yuan H, Liu Z, Ren J (2009) Preparation, characterization, and foaming behavior of poly(lactic acid)/poly(butylene adipate-co-butylene terephthalate) blend. Polym Eng Sci 49:1004–1012CrossRef
56.
go back to reference Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–39CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–39CrossRef
57.
go back to reference Matsuo T, Niwa T, Sugie Y (1999) Preparation and characterization of cationic surfactant-intercalated graphite oxide. Carbon 37:897–901CrossRef Matsuo T, Niwa T, Sugie Y (1999) Preparation and characterization of cationic surfactant-intercalated graphite oxide. Carbon 37:897–901CrossRef
58.
go back to reference Nethravathi C, Rajamathi M (2006) Delamination, colloidal dispersion and reassembly of alkylamine intercalated graphite oxide in alcohols. Carbon 44:2635–2641CrossRef Nethravathi C, Rajamathi M (2006) Delamination, colloidal dispersion and reassembly of alkylamine intercalated graphite oxide in alcohols. Carbon 44:2635–2641CrossRef
59.
go back to reference Kalaitzidou K, Fukushima H, Drzal LT (2007) Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45:1446–1452CrossRef Kalaitzidou K, Fukushima H, Drzal LT (2007) Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45:1446–1452CrossRef
60.
go back to reference Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539CrossRef Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539CrossRef
61.
go back to reference Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRef Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRef
62.
go back to reference Zhang S, Xiong P, Yang X, Wang X (2011) Novel PEG functionalized graphene nanosheets: enhancement of dispersibility and thermal stability. Nanoscale 3:2169–2174CrossRef Zhang S, Xiong P, Yang X, Wang X (2011) Novel PEG functionalized graphene nanosheets: enhancement of dispersibility and thermal stability. Nanoscale 3:2169–2174CrossRef
63.
go back to reference Lonkar SP, Therias S, Leroux F, Gardette JL, Singh RP (2011) Influence of reactive compatibilization on the structure and properties of PP/LDH nanocomposites. Polym Inter 60:1688–1696CrossRef Lonkar SP, Therias S, Leroux F, Gardette JL, Singh RP (2011) Influence of reactive compatibilization on the structure and properties of PP/LDH nanocomposites. Polym Inter 60:1688–1696CrossRef
64.
go back to reference Wang H, Qiu Z (2012) Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites: Influences of graphene oxide loading and crystallization temperature. Thermochim Acta 527:40–46CrossRef Wang H, Qiu Z (2012) Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites: Influences of graphene oxide loading and crystallization temperature. Thermochim Acta 527:40–46CrossRef
65.
go back to reference Zheng W, Wong SC (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63:225–235CrossRef Zheng W, Wong SC (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63:225–235CrossRef
66.
go back to reference Starkweather HW, Avakian P (1992) Conductivity and the electric modulus in polymers. J Polym Sci B Polym Phys 30:637–641CrossRef Starkweather HW, Avakian P (1992) Conductivity and the electric modulus in polymers. J Polym Sci B Polym Phys 30:637–641CrossRef
Metadata
Title
Preparation and characterization of maleated polylactide-functionalized graphite oxide nanocomposites
Authors
Yeh Wang
Chi-S. Lin
Publication date
01-01-2014
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 1/2014
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-013-0334-y

Other articles of this Issue 1/2014

Journal of Polymer Research 1/2014 Go to the issue

Premium Partners