Skip to main content
Erschienen in: Journal of Polymer Research 1/2014

01.01.2014 | Original Paper

Preparation and characterization of maleated polylactide-functionalized graphite oxide nanocomposites

verfasst von: Yeh Wang, Chi-S. Lin

Erschienen in: Journal of Polymer Research | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Organically dispersible graphene nanosheets were fabricated by amine surfactant intercalated graphite oxide (GOAs) with ultrasonication below room temperature. Subsequently, GOAs filled nanocomposites of polylactide grafted with maleic anhydride (PLAgMA) were prepared directly by solution blending. The compatibilization effects provided by the functionalization of both constituents and their influence on the structure and properties of the final nanocomposites in different compositions were investigated. The interactions and structural morphology of the nanocomposites were examined by Fourier transform infrared spectroscopy, X-ray diffraction, scanning and transmission electron microscopy. Thermal, dynamic-mechanical and conductive properties of these nanocomposites were investigated as a function of GOAs content. The detailed morphological and X-ray diffraction results revealed that the degree of GOAs dispersion enhanced with maleated PLA. Study of the dynamic-mechanical properties showed that both the storage modulus G’ and the loss modulus G” are very sensitive to the microstructure of the nanocomposite. The thermal properties of the nanocomposites were significantly influenced by the GOAs content due to the shielding and nucleating effect of exfoliated layers. Both the thermal and electrical conductivities showed substantial improvements with increasing GOAs content. The overall results pointed to the compatibilization synergy of GO functionalization and PLA maleation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ak M, Wibowo A, Misra M, Drzal LT (2004) Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos A 35:363–370CrossRef Ak M, Wibowo A, Misra M, Drzal LT (2004) Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos A 35:363–370CrossRef
2.
Zurück zum Zitat Petersen K, Nielsen PV, Olsen MB (2001) Physical and mechanical properties of biobased materials starch, polylactate and polyhydroxybutyrate. Starch 53:356–361CrossRef Petersen K, Nielsen PV, Olsen MB (2001) Physical and mechanical properties of biobased materials starch, polylactate and polyhydroxybutyrate. Starch 53:356–361CrossRef
3.
Zurück zum Zitat Bastioli C (2001) Global status of the production of biobased packaging materials. Starch 53:351–355CrossRef Bastioli C (2001) Global status of the production of biobased packaging materials. Starch 53:351–355CrossRef
4.
Zurück zum Zitat Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152CrossRef Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152CrossRef
5.
Zurück zum Zitat Vert M, Schwarch G, Coudane J (1995) Present and future of PLA polymers. J Macromol Sci Part A 32:787–796CrossRef Vert M, Schwarch G, Coudane J (1995) Present and future of PLA polymers. J Macromol Sci Part A 32:787–796CrossRef
6.
Zurück zum Zitat Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 66:1507–1513CrossRef Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 66:1507–1513CrossRef
7.
Zurück zum Zitat Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219CrossRef Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219CrossRef
8.
Zurück zum Zitat Jacobsen S, Fritz HG (1999) Plasticizing polylactide-the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310CrossRef Jacobsen S, Fritz HG (1999) Plasticizing polylactide-the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310CrossRef
9.
Zurück zum Zitat Auras RA, Lim LT, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, NJ Auras RA, Lim LT, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, NJ
10.
Zurück zum Zitat Ren J (ed) (2011) Biodegradable poly (lactic acid): synthesis, modification, processing and applications. Springer, Heidelberg Ren J (ed) (2011) Biodegradable poly (lactic acid): synthesis, modification, processing and applications. Springer, Heidelberg
11.
Zurück zum Zitat Jiang L, Zhang JW, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48:7632–7644CrossRef Jiang L, Zhang JW, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48:7632–7644CrossRef
12.
Zurück zum Zitat Yan SF, Yin JB, Yang Y, Dai ZZ, Ma J, Chen XS (2007) Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 48:1688–1694CrossRef Yan SF, Yin JB, Yang Y, Dai ZZ, Ma J, Chen XS (2007) Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 48:1688–1694CrossRef
13.
Zurück zum Zitat Nakayama N, Hayashi T (2007) Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92:1255–1264CrossRef Nakayama N, Hayashi T (2007) Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92:1255–1264CrossRef
14.
Zurück zum Zitat Fukuda N, Tsuji H (2005) Physical properties and enzymatic hydrolysis of poly(L-lactide)–TiO2 composites. J Appl Polym Sci 96:190–199CrossRef Fukuda N, Tsuji H (2005) Physical properties and enzymatic hydrolysis of poly(L-lactide)–TiO2 composites. J Appl Polym Sci 96:190–199CrossRef
15.
Zurück zum Zitat Wei J, Chen QZ, Stevens MM, Roether JA, Boccaccini AR (2008) Biocompatibility and bioactivity of PDLLA/TiO2 and PDLLA/TiO2/Bioglass® nanocomposites. Mater Sci Eng C 28:1–10CrossRef Wei J, Chen QZ, Stevens MM, Roether JA, Boccaccini AR (2008) Biocompatibility and bioactivity of PDLLA/TiO2 and PDLLA/TiO2/Bioglass® nanocomposites. Mater Sci Eng C 28:1–10CrossRef
16.
Zurück zum Zitat Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRef Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRef
17.
Zurück zum Zitat Solarski S, Ferreira M, Devaux E (2008) Ageing of polylactide and polylactide nanocomposite filaments. Polym Degrad Stab 93:707–712CrossRef Solarski S, Ferreira M, Devaux E (2008) Ageing of polylactide and polylactide nanocomposite filaments. Polym Degrad Stab 93:707–712CrossRef
18.
Zurück zum Zitat Hiroi R, Ray SS, Okamoto M, Shiroi T (2004) Organically modified layered titanate: a new nanofiller to improve the performance of biodegradable polylactide. Macromol Rapid Commun 25:1359–1364CrossRef Hiroi R, Ray SS, Okamoto M, Shiroi T (2004) Organically modified layered titanate: a new nanofiller to improve the performance of biodegradable polylactide. Macromol Rapid Commun 25:1359–1364CrossRef
19.
Zurück zum Zitat Nam JY, Ray SS, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131CrossRef Nam JY, Ray SS, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131CrossRef
20.
Zurück zum Zitat Xiao YM, Li DX, Fan HS, Li XD, Gu ZW, Zhang XD (2007) Preparation of nano-HA/PLA composite by modified-PLA for controlling the growth of HA crystals. Mater Lett 61:59–62CrossRef Xiao YM, Li DX, Fan HS, Li XD, Gu ZW, Zhang XD (2007) Preparation of nano-HA/PLA composite by modified-PLA for controlling the growth of HA crystals. Mater Lett 61:59–62CrossRef
21.
Zurück zum Zitat Russias J, Saiz E, Nalla RK, Gryn K, Ritchie RO, Tomsia AP (2006) Fabrication and mechanical properties of PLA/HA composites: a study of in vitro degradation. Mater Sci Eng C 26:1289–1295CrossRef Russias J, Saiz E, Nalla RK, Gryn K, Ritchie RO, Tomsia AP (2006) Fabrication and mechanical properties of PLA/HA composites: a study of in vitro degradation. Mater Sci Eng C 26:1289–1295CrossRef
22.
Zurück zum Zitat Xu XL, Chen XS, Liu AX, Hong ZK, Jing XB (2007) Electrospun poly(l-lactide)-grafted hydroxyapatite/poly(l-lactide) nanocomposite fibers. Eur Polym J 43:3187–3196CrossRef Xu XL, Chen XS, Liu AX, Hong ZK, Jing XB (2007) Electrospun poly(l-lactide)-grafted hydroxyapatite/poly(l-lactide) nanocomposite fibers. Eur Polym J 43:3187–3196CrossRef
23.
Zurück zum Zitat Goffin AL, Duquesne E, Moins S, Alexandre M, Dubois P (2007) New organic–inorganic nanohybrids via ring opening polymerization of (di)lactones initiated by functionalized polyhedral oligomeric silsesquioxane. Eur Polym J 43:4103–4113CrossRef Goffin AL, Duquesne E, Moins S, Alexandre M, Dubois P (2007) New organic–inorganic nanohybrids via ring opening polymerization of (di)lactones initiated by functionalized polyhedral oligomeric silsesquioxane. Eur Polym J 43:4103–4113CrossRef
24.
Zurück zum Zitat Pan H, Qiu Z (2010) Biodegradable Poly(l-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules 43:1499–1506CrossRef Pan H, Qiu Z (2010) Biodegradable Poly(l-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules 43:1499–1506CrossRef
25.
Zurück zum Zitat Wu CS, Liao HT (2007) Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48:4449–4458CrossRef Wu CS, Liao HT (2007) Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48:4449–4458CrossRef
26.
Zurück zum Zitat Song WH, Zheng Z, Tang WL, Wang XL (2007) A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer. Polymer 48:3658–3663CrossRef Song WH, Zheng Z, Tang WL, Wang XL (2007) A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer. Polymer 48:3658–3663CrossRef
27.
Zurück zum Zitat Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000–5008CrossRef Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000–5008CrossRef
28.
Zurück zum Zitat Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900CrossRef Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900CrossRef
29.
Zurück zum Zitat Kim I-H, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci B 48:850–858CrossRef Kim I-H, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci B 48:850–858CrossRef
30.
Zurück zum Zitat Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48:3834–3839CrossRef Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48:3834–3839CrossRef
31.
Zurück zum Zitat Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575CrossRef Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575CrossRef
32.
33.
Zurück zum Zitat Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef
34.
Zurück zum Zitat Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ (2007) Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos Sci Technol 67:2528–2534CrossRef Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ (2007) Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos Sci Technol 67:2528–2534CrossRef
35.
Zurück zum Zitat Uhl FM, Yao Q, Nakajima H, Manias E, Wilkie CA (2005) Expandable graphite/polyamide-6 nanocomposites. Polym Degrad Stab 89:70–84CrossRef Uhl FM, Yao Q, Nakajima H, Manias E, Wilkie CA (2005) Expandable graphite/polyamide-6 nanocomposites. Polym Degrad Stab 89:70–84CrossRef
36.
Zurück zum Zitat Yasmin A, Luo JJ, Daniel IM (2006) Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol 66:1182–1189CrossRef Yasmin A, Luo JJ, Daniel IM (2006) Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol 66:1182–1189CrossRef
37.
Zurück zum Zitat Chen G, Weng W, Wu D, Wu C (2003) PMMA/graphite nanosheets composite and its conducting properties. Eur Polym J 39:2329–2335CrossRef Chen G, Weng W, Wu D, Wu C (2003) PMMA/graphite nanosheets composite and its conducting properties. Eur Polym J 39:2329–2335CrossRef
38.
Zurück zum Zitat Kalaitzidou K, Fukushima H, Drza LT (2007) A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67:2045–2051CrossRef Kalaitzidou K, Fukushima H, Drza LT (2007) A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67:2045–2051CrossRef
39.
Zurück zum Zitat Chen G, Chen X, Wang H, Wu D (2007) Dispersion of graphite nanosheets in polymer resins via masterbatch technique. J Appl Polym Sci 103:3470–3475CrossRef Chen G, Chen X, Wang H, Wu D (2007) Dispersion of graphite nanosheets in polymer resins via masterbatch technique. J Appl Polym Sci 103:3470–3475CrossRef
40.
Zurück zum Zitat Deshmukh K, Khatake SM, Joshi GM (2013) Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites. J Polym Res 20:286CrossRef Deshmukh K, Khatake SM, Joshi GM (2013) Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites. J Polym Res 20:286CrossRef
41.
Zurück zum Zitat Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
42.
Zurück zum Zitat Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JM (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564CrossRef Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JM (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564CrossRef
43.
Zurück zum Zitat Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
44.
Zurück zum Zitat Bourlinos AB, Gournis, Petridis D, Szabo T, Szeri A, Dekany I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055CrossRef Bourlinos AB, Gournis, Petridis D, Szabo T, Szeri A, Dekany I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055CrossRef
45.
Zurück zum Zitat Li W, Tang XZ, Zhang HB, Jiang ZG, Yu ZZ, Du XS, Mai YW (2011) Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon 49:4724–4730CrossRef Li W, Tang XZ, Zhang HB, Jiang ZG, Yu ZZ, Du XS, Mai YW (2011) Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon 49:4724–4730CrossRef
46.
Zurück zum Zitat Cao Y, Feng J, Wu P (2010) Alkyl-functionalized graphene nanosheets with improved lipophilicity. Carbon 48:1683–1685CrossRef Cao Y, Feng J, Wu P (2010) Alkyl-functionalized graphene nanosheets with improved lipophilicity. Carbon 48:1683–1685CrossRef
47.
Zurück zum Zitat Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) J Am Chem Soc 128:7720CrossRef Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) J Am Chem Soc 128:7720CrossRef
48.
Zurück zum Zitat Bai S, Shen X, Zhu G, Xu Z, Liu Y (2011) Reversible phase transfer of graphene oxide and its use in the synthesis of graphene-based hybrid materials. Carbon 49:4563–4570CrossRef Bai S, Shen X, Zhu G, Xu Z, Liu Y (2011) Reversible phase transfer of graphene oxide and its use in the synthesis of graphene-based hybrid materials. Carbon 49:4563–4570CrossRef
49.
Zurück zum Zitat Wang G, Shen X, Wang B, Yao J, Park J (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47:1359–1364CrossRef Wang G, Shen X, Wang B, Yao J, Park J (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47:1359–1364CrossRef
50.
Zurück zum Zitat Park HM, Liang X, Mohanty AK, Misra M, Drzal LT (2004) Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules 37:9076–9082CrossRef Park HM, Liang X, Mohanty AK, Misra M, Drzal LT (2004) Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules 37:9076–9082CrossRef
51.
Zurück zum Zitat Wang Y, Tsai HB (2012) Thermal, dynamic-mechanical, and dielectric properties of surfactant intercalated graphite oxide filled maleated polypropylene nanocomposites. J App Polym Sci 123:3154–3163CrossRef Wang Y, Tsai HB (2012) Thermal, dynamic-mechanical, and dielectric properties of surfactant intercalated graphite oxide filled maleated polypropylene nanocomposites. J App Polym Sci 123:3154–3163CrossRef
52.
Zurück zum Zitat Mishra JK, Hwang KJ, Ha CS (2005) Preparation, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride modified polypropylene as a compatibilizer. Polymer 46:1995–2002CrossRef Mishra JK, Hwang KJ, Ha CS (2005) Preparation, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride modified polypropylene as a compatibilizer. Polymer 46:1995–2002CrossRef
53.
Zurück zum Zitat Petersson L, Oksman K, Mathew AP (2006) Using maleic anhydride grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/layered-silicate nanocomposites. J Appl Polym Sci 102:1852–1862CrossRef Petersson L, Oksman K, Mathew AP (2006) Using maleic anhydride grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/layered-silicate nanocomposites. J Appl Polym Sci 102:1852–1862CrossRef
54.
Zurück zum Zitat Zhang JF, Sun X (2004) Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules 5:1446–1451CrossRef Zhang JF, Sun X (2004) Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules 5:1446–1451CrossRef
55.
Zurück zum Zitat Yuan H, Liu Z, Ren J (2009) Preparation, characterization, and foaming behavior of poly(lactic acid)/poly(butylene adipate-co-butylene terephthalate) blend. Polym Eng Sci 49:1004–1012CrossRef Yuan H, Liu Z, Ren J (2009) Preparation, characterization, and foaming behavior of poly(lactic acid)/poly(butylene adipate-co-butylene terephthalate) blend. Polym Eng Sci 49:1004–1012CrossRef
56.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–39CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–39CrossRef
57.
Zurück zum Zitat Matsuo T, Niwa T, Sugie Y (1999) Preparation and characterization of cationic surfactant-intercalated graphite oxide. Carbon 37:897–901CrossRef Matsuo T, Niwa T, Sugie Y (1999) Preparation and characterization of cationic surfactant-intercalated graphite oxide. Carbon 37:897–901CrossRef
58.
Zurück zum Zitat Nethravathi C, Rajamathi M (2006) Delamination, colloidal dispersion and reassembly of alkylamine intercalated graphite oxide in alcohols. Carbon 44:2635–2641CrossRef Nethravathi C, Rajamathi M (2006) Delamination, colloidal dispersion and reassembly of alkylamine intercalated graphite oxide in alcohols. Carbon 44:2635–2641CrossRef
59.
Zurück zum Zitat Kalaitzidou K, Fukushima H, Drzal LT (2007) Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45:1446–1452CrossRef Kalaitzidou K, Fukushima H, Drzal LT (2007) Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45:1446–1452CrossRef
60.
Zurück zum Zitat Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539CrossRef Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539CrossRef
61.
Zurück zum Zitat Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRef Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRef
62.
Zurück zum Zitat Zhang S, Xiong P, Yang X, Wang X (2011) Novel PEG functionalized graphene nanosheets: enhancement of dispersibility and thermal stability. Nanoscale 3:2169–2174CrossRef Zhang S, Xiong P, Yang X, Wang X (2011) Novel PEG functionalized graphene nanosheets: enhancement of dispersibility and thermal stability. Nanoscale 3:2169–2174CrossRef
63.
Zurück zum Zitat Lonkar SP, Therias S, Leroux F, Gardette JL, Singh RP (2011) Influence of reactive compatibilization on the structure and properties of PP/LDH nanocomposites. Polym Inter 60:1688–1696CrossRef Lonkar SP, Therias S, Leroux F, Gardette JL, Singh RP (2011) Influence of reactive compatibilization on the structure and properties of PP/LDH nanocomposites. Polym Inter 60:1688–1696CrossRef
64.
Zurück zum Zitat Wang H, Qiu Z (2012) Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites: Influences of graphene oxide loading and crystallization temperature. Thermochim Acta 527:40–46CrossRef Wang H, Qiu Z (2012) Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites: Influences of graphene oxide loading and crystallization temperature. Thermochim Acta 527:40–46CrossRef
65.
Zurück zum Zitat Zheng W, Wong SC (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63:225–235CrossRef Zheng W, Wong SC (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63:225–235CrossRef
66.
Zurück zum Zitat Starkweather HW, Avakian P (1992) Conductivity and the electric modulus in polymers. J Polym Sci B Polym Phys 30:637–641CrossRef Starkweather HW, Avakian P (1992) Conductivity and the electric modulus in polymers. J Polym Sci B Polym Phys 30:637–641CrossRef
Metadaten
Titel
Preparation and characterization of maleated polylactide-functionalized graphite oxide nanocomposites
verfasst von
Yeh Wang
Chi-S. Lin
Publikationsdatum
01.01.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 1/2014
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-013-0334-y

Weitere Artikel der Ausgabe 1/2014

Journal of Polymer Research 1/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.