Skip to main content
Erschienen in: Journal of Polymer Research 1/2014

01.01.2014 | Original Paper

In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups

verfasst von: Hossein Roghani-Mamaqani, Vahid Haddadi-Asl, Khezrollah Khezri, Elnaz Zeinali, Mehdi Salami-Kalajahi

Erschienen in: Journal of Polymer Research | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene oxide (GO) was modified with two different amounts of 3-(trimethoxysilyl)propyl methacrylate (MPS) by a silane coupling reaction. Atom transfer radical polymerization of styrene in the presence of different amounts of MPS-modified graphene was carried out to evaluate the effect of graphene loading along with the graft density on the properties of the products. Successful attachment of MPS on the surface of GO was evaluated using Fourier transform infrared spectroscopy. Expansion of graphene interlayers by oxidation and functionalization processes was evaluated using X-ray diffraction. The ordered and disordered crystal structure of carbon in pristine and surface modified graphenes was evaluated by Raman spectroscopy. Relaxation behavior of polystyrene chains in the presence of graphene layers and also effect of graft content on the chain confinement was studied using differential scanning calorimetry. High-density nanocomposites show much increase of Tg by addition of graphene content. Morphology of graphene nanolayers after modification processes was studied by scanning electron microscopy and also transmission electron microscopy. Flat and smooth morphology of graphene nanosheets was disturbed during the oxidation and functionalization processes and consequently wrinkled sheets with curvature were obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Loh KP, Bao Q, Ang PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20:2277–2289CrossRef Loh KP, Bao Q, Ang PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20:2277–2289CrossRef
2.
Zurück zum Zitat Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
3.
Zurück zum Zitat Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136CrossRef Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136CrossRef
4.
Zurück zum Zitat Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214CrossRef Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214CrossRef
5.
Zurück zum Zitat Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146CrossRef Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146CrossRef
6.
Zurück zum Zitat Roghani-Mamaqani H, Haddadi-Asl V, Salami-Kalajahi M (2012) In situ controlled radical polymerization: a review on synthesis of well-defined nanocomposites. Polym Rev 52:142–188CrossRef Roghani-Mamaqani H, Haddadi-Asl V, Salami-Kalajahi M (2012) In situ controlled radical polymerization: a review on synthesis of well-defined nanocomposites. Polym Rev 52:142–188CrossRef
7.
Zurück zum Zitat Lee SH, Dreyer DR, An J, Velamakanni A, Piner RD, Park S, Zhu Y, Kim SO, Bielawski CW, Ruoff RS (2010) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31:281–288CrossRef Lee SH, Dreyer DR, An J, Velamakanni A, Piner RD, Park S, Zhu Y, Kim SO, Bielawski CW, Ruoff RS (2010) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31:281–288CrossRef
8.
Zurück zum Zitat Deng Y, Zhang JZ, Li Y, Hu J, Yang D, Huang X (2012) Thermoresponsive graphene oxide-PNIPAM nanocomposites with controlled grafting polymer chains via moderate in situ SET-LRP. J Polym Sci A Polym Chem 50:4451–4458CrossRef Deng Y, Zhang JZ, Li Y, Hu J, Yang D, Huang X (2012) Thermoresponsive graphene oxide-PNIPAM nanocomposites with controlled grafting polymer chains via moderate in situ SET-LRP. J Polym Sci A Polym Chem 50:4451–4458CrossRef
9.
Zurück zum Zitat Ren L, Wang X, Guo S, Liu T (2011) Functionalization of thermally reduced graphene by in situ atom transfer radical polymerization. J Nanoparticle Res 13:6389–6396CrossRef Ren L, Wang X, Guo S, Liu T (2011) Functionalization of thermally reduced graphene by in situ atom transfer radical polymerization. J Nanoparticle Res 13:6389–6396CrossRef
10.
Zurück zum Zitat Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105CrossRef Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105CrossRef
11.
Zurück zum Zitat Fang M, Wang K, Lu H, Yang Y, Nutt S (2010) Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem 20:1982–1992CrossRef Fang M, Wang K, Lu H, Yang Y, Nutt S (2010) Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem 20:1982–1992CrossRef
12.
Zurück zum Zitat Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2011) Tailor-made polystyrene nanocomposite with mixed clay-anchored and free chains via ATRP. AIChE J 57:1873–1881CrossRef Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2011) Tailor-made polystyrene nanocomposite with mixed clay-anchored and free chains via ATRP. AIChE J 57:1873–1881CrossRef
13.
Zurück zum Zitat Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2012) Confinement effect of nanoclay platelets on the kinetics of polystyrene prepared via ATRP. J Appl Polym Sci 123:409–417CrossRef Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2012) Confinement effect of nanoclay platelets on the kinetics of polystyrene prepared via ATRP. J Appl Polym Sci 123:409–417CrossRef
14.
Zurück zum Zitat Rahimi-Razin S, Salami-Kalajahi M, Haddadi-Asl V, Roghani-Mamaqani H (2012) Effect of different modified nanoclays on the kinetics of preparation and properties of polymer-based nanocomposites. J Polym Res 19:9954CrossRef Rahimi-Razin S, Salami-Kalajahi M, Haddadi-Asl V, Roghani-Mamaqani H (2012) Effect of different modified nanoclays on the kinetics of preparation and properties of polymer-based nanocomposites. J Polym Res 19:9954CrossRef
15.
Zurück zum Zitat Ahmadian-Alam L, Haddadi-Asl V, Roghani-Mamaqani H, Hatami L, Salami-Kalajahi M (2012) Use of clay-anchored reactive modifier for the synthesis of poly (styrene-co-butyl acrylate)/clay nanocomposite via in situ AGET ATRP. J Polym Res 19:9773CrossRef Ahmadian-Alam L, Haddadi-Asl V, Roghani-Mamaqani H, Hatami L, Salami-Kalajahi M (2012) Use of clay-anchored reactive modifier for the synthesis of poly (styrene-co-butyl acrylate)/clay nanocomposite via in situ AGET ATRP. J Polym Res 19:9773CrossRef
16.
Zurück zum Zitat Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Matrix grafted multi-walled carbon nanotubes/poly(methyl methacrylate) nanocomposites synthesized by in situ RAFT polymerization: a kinetics study. Int J Chem Kinet 44:555–569CrossRef Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Matrix grafted multi-walled carbon nanotubes/poly(methyl methacrylate) nanocomposites synthesized by in situ RAFT polymerization: a kinetics study. Int J Chem Kinet 44:555–569CrossRef
17.
Zurück zum Zitat Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Properties of matrix-grafted multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization. J Iran Chem Soc 9:777–887CrossRef Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Properties of matrix-grafted multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization. J Iran Chem Soc 9:777–887CrossRef
18.
Zurück zum Zitat Deng Y, Li YJ, Dai J, Lang M, Huang X (2011) An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry. J Polym Sci A Polym Chem 49:1582–1590CrossRef Deng Y, Li YJ, Dai J, Lang M, Huang X (2011) An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry. J Polym Sci A Polym Chem 49:1582–1590CrossRef
19.
Zurück zum Zitat Zeng C, Lee LJ (2001) Poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared by in-Situ polymerization. Macromolecules 34:4098–4103CrossRef Zeng C, Lee LJ (2001) Poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared by in-Situ polymerization. Macromolecules 34:4098–4103CrossRef
20.
Zurück zum Zitat Salem N, Shipp DA (2005) Polymer-layered silicate nanocomposites prepared through in situ reversible addition–fragmentation chain transfer (RAFT) polymerization. Polymer 46:8573–8581CrossRef Salem N, Shipp DA (2005) Polymer-layered silicate nanocomposites prepared through in situ reversible addition–fragmentation chain transfer (RAFT) polymerization. Polymer 46:8573–8581CrossRef
21.
Zurück zum Zitat Chinthamanipeta PS, Kobukata S, Nakata H, Shipp DA (2008) Synthesis of poly(methyl methacrylate)-silica nanocomposites using methacrylate-functionalized silica nanoparticles and RAFT polymerization. Polymer 49:5636–5642CrossRef Chinthamanipeta PS, Kobukata S, Nakata H, Shipp DA (2008) Synthesis of poly(methyl methacrylate)-silica nanocomposites using methacrylate-functionalized silica nanoparticles and RAFT polymerization. Polymer 49:5636–5642CrossRef
22.
Zurück zum Zitat Semsarilar M, Perrier S (2010) Green reversible addition-fragmentation chain-transfer (RAFT) polymerization. Nat Chem 2:811–820CrossRef Semsarilar M, Perrier S (2010) Green reversible addition-fragmentation chain-transfer (RAFT) polymerization. Nat Chem 2:811–820CrossRef
23.
Zurück zum Zitat Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Roghani-Mamaqani H, Hemmati M (2011) Investigating the effect of pristine and modified silica nanoparticles on the kinetics of methyl methacrylate polymerization. Chem Eng J 174:368–375CrossRef Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Roghani-Mamaqani H, Hemmati M (2011) Investigating the effect of pristine and modified silica nanoparticles on the kinetics of methyl methacrylate polymerization. Chem Eng J 174:368–375CrossRef
24.
Zurück zum Zitat Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H (2012) Effect of silica nanoparticle loading and surface modification on the kinetics of RAFT polymerization. J Polym Eng 32:13–22CrossRef Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H (2012) Effect of silica nanoparticle loading and surface modification on the kinetics of RAFT polymerization. J Polym Eng 32:13–22CrossRef
25.
Zurück zum Zitat Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Najafi M, Roghani-Mamaqani H (2012) A study on the properties of PMMA/silica nanocomposites prepared via RAFT polymerization. J Polym Res 19:9793CrossRef Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Najafi M, Roghani-Mamaqani H (2012) A study on the properties of PMMA/silica nanocomposites prepared via RAFT polymerization. J Polym Res 19:9793CrossRef
26.
Zurück zum Zitat Ngo VG, Bressy C, Leroux C, Margaillan A (2009) Synthesis of hybrid TiO2 nanoparticles with well-defined poly(methyl methacrylate) and poly(tert-butyldimethylsilyl methacrylate) via the RAFT process. Polymer 50:3095–3102CrossRef Ngo VG, Bressy C, Leroux C, Margaillan A (2009) Synthesis of hybrid TiO2 nanoparticles with well-defined poly(methyl methacrylate) and poly(tert-butyldimethylsilyl methacrylate) via the RAFT process. Polymer 50:3095–3102CrossRef
27.
Zurück zum Zitat Qin S, Qin D, Ford WT, Resasco DE, Herrera JE (2004) Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. J Am Chem Soc 126:170–176CrossRef Qin S, Qin D, Ford WT, Resasco DE, Herrera JE (2004) Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. J Am Chem Soc 126:170–176CrossRef
28.
Zurück zum Zitat Hong CY, You YZ, Pan CY (2005) Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization. Chem Mater 17:2247–2254CrossRef Hong CY, You YZ, Pan CY (2005) Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization. Chem Mater 17:2247–2254CrossRef
29.
Zurück zum Zitat Bao C, Guo Y, Yuan B, Hu Y, Song L (2012) Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. J Mater Chem 22:23057CrossRef Bao C, Guo Y, Yuan B, Hu Y, Song L (2012) Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. J Mater Chem 22:23057CrossRef
30.
Zurück zum Zitat Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21:13290CrossRef Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21:13290CrossRef
31.
Zurück zum Zitat Zhu S, Li J, Chen Y, Chen Z, Chen C, Li Y, Cui Z, Zhang D (2012) Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release. J Nanopart Res 14:1132CrossRef Zhu S, Li J, Chen Y, Chen Z, Chen C, Li Y, Cui Z, Zhang D (2012) Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release. J Nanopart Res 14:1132CrossRef
32.
Zurück zum Zitat Lin Y, Jin J, Song M (2011) Preparation and characterisation of covalent polymer functionalized graphene oxide. J Mater Chem 21:3455–3461CrossRef Lin Y, Jin J, Song M (2011) Preparation and characterisation of covalent polymer functionalized graphene oxide. J Mater Chem 21:3455–3461CrossRef
33.
Zurück zum Zitat Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638CrossRef Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638CrossRef
34.
Zurück zum Zitat Siddiquey IA, Ukaji E, Furusawa T, Sato M, Suzuki N (2007) The effects of organic surface treatment by methacryloxypropyltrimethoxysilane on the photostability of TiO2. Mater Chem Phys 105:162–168CrossRef Siddiquey IA, Ukaji E, Furusawa T, Sato M, Suzuki N (2007) The effects of organic surface treatment by methacryloxypropyltrimethoxysilane on the photostability of TiO2. Mater Chem Phys 105:162–168CrossRef
35.
Zurück zum Zitat Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2010) Synthesis and characterization of clay dispersed polystyrene nanocomposite via atom transfer radical polymerization. Polym Compos 31:1829–1837CrossRef Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2010) Synthesis and characterization of clay dispersed polystyrene nanocomposite via atom transfer radical polymerization. Polym Compos 31:1829–1837CrossRef
36.
Zurück zum Zitat Li M, Jeong YG (2011) Poly(ethylene terephthalate)/exfoliated graphite nanocomposites with improved thermal stability, mechanical and electrical properties. Compos Part A 42:560–566CrossRef Li M, Jeong YG (2011) Poly(ethylene terephthalate)/exfoliated graphite nanocomposites with improved thermal stability, mechanical and electrical properties. Compos Part A 42:560–566CrossRef
37.
Zurück zum Zitat Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484:247–253CrossRef Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484:247–253CrossRef
38.
Zurück zum Zitat Kudin KN, Ozbas B, Schniepp HC, Prudhomme RK, Aksay A, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano lett 8:36–41CrossRef Kudin KN, Ozbas B, Schniepp HC, Prudhomme RK, Aksay A, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano lett 8:36–41CrossRef
39.
Zurück zum Zitat Jeon IY, Choi HJ, Jung SM, Seo JM, Kim MJ, Dai L (2013) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135:1386–1393CrossRef Jeon IY, Choi HJ, Jung SM, Seo JM, Kim MJ, Dai L (2013) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135:1386–1393CrossRef
40.
Zurück zum Zitat Sun S, Cao Y, Feng J, Wu P (2010) Click chemistry as a route for the immobilization of well-defined polystyrene onto graphene sheets. J Mater Chem 20:5605–5607CrossRef Sun S, Cao Y, Feng J, Wu P (2010) Click chemistry as a route for the immobilization of well-defined polystyrene onto graphene sheets. J Mater Chem 20:5605–5607CrossRef
41.
Zurück zum Zitat Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106CrossRef Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106CrossRef
42.
Zurück zum Zitat Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114CrossRef Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114CrossRef
43.
Zurück zum Zitat Villar-Rodil S, Paredes JI, Martínez-Alonso A, Tascón JMD (2009) Preparation of graphene dispersions and graphene-polymer composites in organic media. J Mater Chem 19:3591–3593CrossRef Villar-Rodil S, Paredes JI, Martínez-Alonso A, Tascón JMD (2009) Preparation of graphene dispersions and graphene-polymer composites in organic media. J Mater Chem 19:3591–3593CrossRef
44.
Zurück zum Zitat Sanna R, Sanna D, Alzari V, Nuvoli D, Scognamillo S, Piccinini M (2012) Synthesis and characterization of graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-vinylcaprolactam) prepared by frontal polymerization. J Polym Sci A Polym Chem 50:4110–4118CrossRef Sanna R, Sanna D, Alzari V, Nuvoli D, Scognamillo S, Piccinini M (2012) Synthesis and characterization of graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-vinylcaprolactam) prepared by frontal polymerization. J Polym Sci A Polym Chem 50:4110–4118CrossRef
45.
Zurück zum Zitat Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401–18404CrossRef Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401–18404CrossRef
46.
Zurück zum Zitat Ren L, Liu T, Guo J, Guo S, Wang X, Wang W (2010) A smart pH responsive graphene/polyacrylamide complex via noncovalent interaction. Nanotechnology 21:335701CrossRef Ren L, Liu T, Guo J, Guo S, Wang X, Wang W (2010) A smart pH responsive graphene/polyacrylamide complex via noncovalent interaction. Nanotechnology 21:335701CrossRef
47.
Zurück zum Zitat Oh H, Green PF (2009) Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. Nat Mater 8:139–143CrossRef Oh H, Green PF (2009) Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. Nat Mater 8:139–143CrossRef
48.
Zurück zum Zitat Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327CrossRef Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327CrossRef
49.
Zurück zum Zitat Fox TG, Flory PJ (1950) Second‐order transition temperatures and related properties of polystyrene. I. influence of molecular weight. J Appl Phys 21:581–591CrossRef Fox TG, Flory PJ (1950) Second‐order transition temperatures and related properties of polystyrene. I. influence of molecular weight. J Appl Phys 21:581–591CrossRef
50.
Zurück zum Zitat Wu HX, Tong R, Qiu XQ, Yang HF, Lin YH, Cai RF, Qian SX (2007) Functionalization of multiwalled carbon nanotubes with polystyrene under atom transfer radical polymerization conditions. Carbon 45:152–159CrossRef Wu HX, Tong R, Qiu XQ, Yang HF, Lin YH, Cai RF, Qian SX (2007) Functionalization of multiwalled carbon nanotubes with polystyrene under atom transfer radical polymerization conditions. Carbon 45:152–159CrossRef
51.
Zurück zum Zitat Chi CH, Hsu YC, Tseng LC, Suen SY, Wu JY, Lee RH (2013) Carbon nanotube and graphite oxide surfaces modified with polyethylene oxide for dye-synthesized solar cells. J Polym Res 20:269CrossRef Chi CH, Hsu YC, Tseng LC, Suen SY, Wu JY, Lee RH (2013) Carbon nanotube and graphite oxide surfaces modified with polyethylene oxide for dye-synthesized solar cells. J Polym Res 20:269CrossRef
Metadaten
Titel
In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups
verfasst von
Hossein Roghani-Mamaqani
Vahid Haddadi-Asl
Khezrollah Khezri
Elnaz Zeinali
Mehdi Salami-Kalajahi
Publikationsdatum
01.01.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 1/2014
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-013-0333-z

Weitere Artikel der Ausgabe 1/2014

Journal of Polymer Research 1/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.