Skip to main content
Top
Published in: Polymer Bulletin 5/2019

21-08-2018 | Original Paper

Preparation, characterization, and antimicrobial activity of poly(γ-glutamic acid)/chitosan blends

Authors: Zuolong Yu, Wangcheng Liu, Po Huo

Published in: Polymer Bulletin | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biocomposites of poly(γ-glutamic acid) (PGA) were prepared by a two-screw extruder using chitosan (CS) as the block with glycerol and with/without water and acetic acid as additives. The influences of the CS content and various additives on the properties of PGA/CS blends were investigated. The results of mechanical tests demonstrated that the elongation at break of the blends decreased with increasing quality proportion of CS. Fourier transform infrared spectroscopy revealed that there were ionic interactions in the blends. Thermodynamic characterizations and dynamic mechanical analyses indicated that the glass-transition temperature of the blends decreased with increasing CS proportion and was obviously influenced by additives. X-ray diffractograms indicated that selecting a suitable solvent is beneficial to the blending of raw materials. Morphology analysis showed that the two kinds of substrates exhibited different miscibilities under different conditions. In addition, the antibacterial activities of the blends against Escherichia coli were not obvious because of their limited solubility. Therefore, the PGA/CS blends appear to have potential as a new biomaterial.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Richard A, Margaritis A (2001) Poly(glutamic acid) for biomedical applications. Crit Rev Biotechnol 21(4):219–232CrossRef Richard A, Margaritis A (2001) Poly(glutamic acid) for biomedical applications. Crit Rev Biotechnol 21(4):219–232CrossRef
2.
go back to reference Ko YH, Gross RA (1998) Effects of glucose and glycerol on γ-poly(glutamic acid) formation by Bacillus licheniformis ATCC 9945a. Biotechnol Bioeng 57(4):430–437CrossRef Ko YH, Gross RA (1998) Effects of glucose and glycerol on γ-poly(glutamic acid) formation by Bacillus licheniformis ATCC 9945a. Biotechnol Bioeng 57(4):430–437CrossRef
3.
go back to reference Richard A, Margaritis A (2003) Optimization of cell growth and poly (glutamic acid) production in batch fermentation by Bacillus subtilis. Biotechnol Lett 25(6):465–468CrossRef Richard A, Margaritis A (2003) Optimization of cell growth and poly (glutamic acid) production in batch fermentation by Bacillus subtilis. Biotechnol Lett 25(6):465–468CrossRef
4.
go back to reference Kunioka M (1997) Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl Microbiol Biotechnol 47(5):469–475CrossRef Kunioka M (1997) Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl Microbiol Biotechnol 47(5):469–475CrossRef
5.
go back to reference King EC, Blacker AJ, Bugg TD (2000) Enzymatic breakdown of poly-gamma-d-glutamic acid in Bacillus licheniformis: identification of a polyglutamyl gamma-hydrolase enzyme. Biomacromolecules 1(1):75–83CrossRef King EC, Blacker AJ, Bugg TD (2000) Enzymatic breakdown of poly-gamma-d-glutamic acid in Bacillus licheniformis: identification of a polyglutamyl gamma-hydrolase enzyme. Biomacromolecules 1(1):75–83CrossRef
6.
go back to reference Apfelthaler C, Gassenbauer P, Weisse S, Gabor F, Wirth M (2018) A lectin mediated delivery system for the intravesical treatment of bladder diseases using poly-(l)-glutamic acid as polymeric backbone. Eur J Pharm Sci 111:376–382CrossRef Apfelthaler C, Gassenbauer P, Weisse S, Gabor F, Wirth M (2018) A lectin mediated delivery system for the intravesical treatment of bladder diseases using poly-(l)-glutamic acid as polymeric backbone. Eur J Pharm Sci 111:376–382CrossRef
7.
go back to reference Ma X, Xu T, Chen W, Qin H, Chi B, Ye Z (2018) Injectable hydrogels based on the hyaluronic acid and poly(γ-glutamic acid) for controlled protein delivery. Carbohydr Polym 179:100–109CrossRef Ma X, Xu T, Chen W, Qin H, Chi B, Ye Z (2018) Injectable hydrogels based on the hyaluronic acid and poly(γ-glutamic acid) for controlled protein delivery. Carbohydr Polym 179:100–109CrossRef
8.
go back to reference Deng SB, Bai RB, Hu XM, Luo Q (2003) Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Appl Microbiol Biotechnol 60(5):588–593CrossRef Deng SB, Bai RB, Hu XM, Luo Q (2003) Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Appl Microbiol Biotechnol 60(5):588–593CrossRef
9.
go back to reference Shyu YS, Hwang JY, Hsu CK (2008) Improving the rheological and thermal properties of wheat dough by the addition of γ-polyglutamic acid. LWT Food Sci Technol 41(6):982–987CrossRef Shyu YS, Hwang JY, Hsu CK (2008) Improving the rheological and thermal properties of wheat dough by the addition of γ-polyglutamic acid. LWT Food Sci Technol 41(6):982–987CrossRef
10.
go back to reference Guo Z, Chen B, Wang Z, Jiang X (2015) An electrochemiluminescence biosensor for mercury ion detection based on gamma-polyglutamic acid-graphene-luminol composite and oligonucleotides. Sens Actuators B Chem 209:579–585CrossRef Guo Z, Chen B, Wang Z, Jiang X (2015) An electrochemiluminescence biosensor for mercury ion detection based on gamma-polyglutamic acid-graphene-luminol composite and oligonucleotides. Sens Actuators B Chem 209:579–585CrossRef
11.
go back to reference Abellan-Pose R, Teijeiro-Valiño C, Santander-Ortega MJ, Borrajo E, Vidal A, Garcia-Fuentes M, Csaba NAlonso MJ (2016) Polyaminoacid nanocapsules for drug delivery to the lymphatic system: effect of the particle size. Int J Pharm 509(1–2):107–117CrossRef Abellan-Pose R, Teijeiro-Valiño C, Santander-Ortega MJ, Borrajo E, Vidal A, Garcia-Fuentes M, Csaba NAlonso MJ (2016) Polyaminoacid nanocapsules for drug delivery to the lymphatic system: effect of the particle size. Int J Pharm 509(1–2):107–117CrossRef
12.
go back to reference Abellan-Pose R, Rodríguez-Évora M, Vicente S, Csaba N, Évora C, Alonso MJ, Delgado A (2017) Biodistribution of radiolabeled polyglutamic acid and PEG-polyglutamic acid nanocapsules. Eur J Pharm Biopharm 112:155–163CrossRef Abellan-Pose R, Rodríguez-Évora M, Vicente S, Csaba N, Évora C, Alonso MJ, Delgado A (2017) Biodistribution of radiolabeled polyglutamic acid and PEG-polyglutamic acid nanocapsules. Eur J Pharm Biopharm 112:155–163CrossRef
13.
go back to reference Rabea EI, Badawy ET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465CrossRef Rabea EI, Badawy ET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465CrossRef
14.
go back to reference Friedman M, Juneja VK (2010) Review of antimicrobial and antioxidative activities of chitosans in food. J Food Prot 73(9):1737–1761CrossRef Friedman M, Juneja VK (2010) Review of antimicrobial and antioxidative activities of chitosans in food. J Food Prot 73(9):1737–1761CrossRef
15.
go back to reference Tuhin MO, Rahman N, Haque ME, Khan RA, Dafader NC, Islam R, Nurnabi M, Tonny W (2012) Modification of mechanical and thermal property of chitosan–starch blend films. Radiat Phys Chem 81(10):1659–1668CrossRef Tuhin MO, Rahman N, Haque ME, Khan RA, Dafader NC, Islam R, Nurnabi M, Tonny W (2012) Modification of mechanical and thermal property of chitosan–starch blend films. Radiat Phys Chem 81(10):1659–1668CrossRef
16.
go back to reference Albadarin AB, Collins MN, Naushad M, Shirazian S, Walker G, Mangwandi C (2017) Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem Eng J 307:264–272CrossRef Albadarin AB, Collins MN, Naushad M, Shirazian S, Walker G, Mangwandi C (2017) Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem Eng J 307:264–272CrossRef
17.
go back to reference Qiao C, Ma X, Zhang J, Yao J (2017) Molecular interactions in gelatin/chitosan composite films. Food Chem 235:45–50CrossRef Qiao C, Ma X, Zhang J, Yao J (2017) Molecular interactions in gelatin/chitosan composite films. Food Chem 235:45–50CrossRef
18.
go back to reference Liu J, Liu S, Wu Q, Gu Y, Kan J, Jin C (2017) Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film. Food Hydrocolloids 73:90–100CrossRef Liu J, Liu S, Wu Q, Gu Y, Kan J, Jin C (2017) Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film. Food Hydrocolloids 73:90–100CrossRef
19.
go back to reference Jindal M, Kumar V, Rana V, Tiwary AK (2013) An insight into the properties of Aegle marmelos pectin–chitosan cross-linked films. Int J Biol Macromol 52:77–84CrossRef Jindal M, Kumar V, Rana V, Tiwary AK (2013) An insight into the properties of Aegle marmelos pectin–chitosan cross-linked films. Int J Biol Macromol 52:77–84CrossRef
20.
go back to reference Zhou X, Dong C, Yang Z, Tian Z, Lu L, Yang W, Wang Y, Zhang L, Li A, Chen J (2018) Enhanced adsorption of pharmaceuticals onto core-brush shaped aromatic rings-functionalized chitosan magnetic composite particles: effects of structural characteristics of both pharmaceuticals and brushes. J Clean Prod 172:1025–1034CrossRef Zhou X, Dong C, Yang Z, Tian Z, Lu L, Yang W, Wang Y, Zhang L, Li A, Chen J (2018) Enhanced adsorption of pharmaceuticals onto core-brush shaped aromatic rings-functionalized chitosan magnetic composite particles: effects of structural characteristics of both pharmaceuticals and brushes. J Clean Prod 172:1025–1034CrossRef
21.
go back to reference Park J, Pei Y, Hyun H, Castanares MA, Collins DS, Yeo Y (2017) Small molecule delivery to solid tumors with chitosan-coated PLGA particles: a lesson learned from comparative imaging. J Control Release 268:407–415CrossRef Park J, Pei Y, Hyun H, Castanares MA, Collins DS, Yeo Y (2017) Small molecule delivery to solid tumors with chitosan-coated PLGA particles: a lesson learned from comparative imaging. J Control Release 268:407–415CrossRef
22.
go back to reference Tsao CT, Chang CH, Lin YY, Wu MF, Wang JL, Han JL, Hsieh KH (2010) Antibacterial activity and biocompatibility of a chitosan-gamma-poly(glutamic acid) polyelectrolyte complex hydrogel. Carbohydr Res 345(12):1774–1780CrossRef Tsao CT, Chang CH, Lin YY, Wu MF, Wang JL, Han JL, Hsieh KH (2010) Antibacterial activity and biocompatibility of a chitosan-gamma-poly(glutamic acid) polyelectrolyte complex hydrogel. Carbohydr Res 345(12):1774–1780CrossRef
23.
go back to reference Lin Y-H, Chung C-K, Chen C-T, Liang H-F, Chen S-C, Sung H-W (2005) Preparation of nanoparticles composed of chitosan/poly-γ-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules 6(2):1104–1112CrossRef Lin Y-H, Chung C-K, Chen C-T, Liang H-F, Chen S-C, Sung H-W (2005) Preparation of nanoparticles composed of chitosan/poly-γ-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules 6(2):1104–1112CrossRef
24.
go back to reference Jeon YO, Lee J-S, Lee HG (2016) Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly(glutamic acid). Colloid Surf B 147:224–233CrossRef Jeon YO, Lee J-S, Lee HG (2016) Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly(glutamic acid). Colloid Surf B 147:224–233CrossRef
25.
go back to reference Correlo VM, Boesel LF, Bhattacharya M, Mano JF, Neves NM, Reis RL (2005) Properties of melt processed chitosan and aliphatic polyester blends. Mater Sci Eng A Struct 403(1–2):57–68CrossRef Correlo VM, Boesel LF, Bhattacharya M, Mano JF, Neves NM, Reis RL (2005) Properties of melt processed chitosan and aliphatic polyester blends. Mater Sci Eng A Struct 403(1–2):57–68CrossRef
26.
go back to reference Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, Sung HW (2007) Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8(1):146–152CrossRef Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, Sung HW (2007) Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8(1):146–152CrossRef
27.
go back to reference Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrières J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42(8):3569–3580CrossRef Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrières J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42(8):3569–3580CrossRef
28.
go back to reference Zhang Y, Huo M, Zhou J, Yu D, Wu Y (2009) Potential of amphiphilically modified low molecular weight chitosan as a novel carrier for hydrophobic anticancer drug: synthesis, characterization, micellization and cytotoxicity evaluation. Carbohydr Polym 77(2):231–238CrossRef Zhang Y, Huo M, Zhou J, Yu D, Wu Y (2009) Potential of amphiphilically modified low molecular weight chitosan as a novel carrier for hydrophobic anticancer drug: synthesis, characterization, micellization and cytotoxicity evaluation. Carbohydr Polym 77(2):231–238CrossRef
29.
go back to reference Lawrie Gwen, Keen Imelda, Drew Barry, Chandlertemple Adrienne, Rintoul Llewellyn, Peter Fredericks A, Grøndahl Lisbeth (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 8(8):2533–2541CrossRef Lawrie Gwen, Keen Imelda, Drew Barry, Chandlertemple Adrienne, Rintoul Llewellyn, Peter Fredericks A, Grøndahl Lisbeth (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 8(8):2533–2541CrossRef
30.
go back to reference Simsek-Ege FA, Bond GM, Stringer J (2003) Polyelectrolyte complex formation between alginate and chitosan as a function of pH. J Appl Polym Sci 88(2):346–351CrossRef Simsek-Ege FA, Bond GM, Stringer J (2003) Polyelectrolyte complex formation between alginate and chitosan as a function of pH. J Appl Polym Sci 88(2):346–351CrossRef
31.
go back to reference Lin WC, Yu DG, Yang MC (2006) Blood compatibility of novel poly(gamma-glutamic acid)/polyvinyl alcohol hydrogels. Colloid Surf B 47(1):43–49CrossRef Lin WC, Yu DG, Yang MC (2006) Blood compatibility of novel poly(gamma-glutamic acid)/polyvinyl alcohol hydrogels. Colloid Surf B 47(1):43–49CrossRef
32.
go back to reference Garcia JPD, Hsieh MF, Doma BT, Peruelo DC, Chen IH, Lee HM (2013) Synthesis of gelatin-γ-polyglutamic acid-based hydrogel for the in vitro controlled release of epigallocatechin gallate (EGCG) from Camellia sinensis. Polymers 6(1):39–58CrossRef Garcia JPD, Hsieh MF, Doma BT, Peruelo DC, Chen IH, Lee HM (2013) Synthesis of gelatin-γ-polyglutamic acid-based hydrogel for the in vitro controlled release of epigallocatechin gallate (EGCG) from Camellia sinensis. Polymers 6(1):39–58CrossRef
33.
go back to reference Kubota H, Nambu Y, Endo T (1995) Convenient esterification of poly(γ-glutamic acid) produced by microorganism with alkyl halides and their thermal properties. J Polym Sci Pol Chem 33(1):85–88CrossRef Kubota H, Nambu Y, Endo T (1995) Convenient esterification of poly(γ-glutamic acid) produced by microorganism with alkyl halides and their thermal properties. J Polym Sci Pol Chem 33(1):85–88CrossRef
34.
go back to reference Margaritis A (2008) Production and characterization of γ-polyglutamic acid nanoparticles for controlled anticancer drug release. Crit Rev Biotechnol 28(2):83–99CrossRef Margaritis A (2008) Production and characterization of γ-polyglutamic acid nanoparticles for controlled anticancer drug release. Crit Rev Biotechnol 28(2):83–99CrossRef
35.
go back to reference Sun Y, Liu Y, Liu W, Lu C, Wang L (2015) Chitosan microparticles ionically cross-linked with poly(γ-glutamic acid) as antimicrobial peptides and nitric oxide delivery systems. Biochem Eng J 95:78–85CrossRef Sun Y, Liu Y, Liu W, Lu C, Wang L (2015) Chitosan microparticles ionically cross-linked with poly(γ-glutamic acid) as antimicrobial peptides and nitric oxide delivery systems. Biochem Eng J 95:78–85CrossRef
36.
go back to reference Ogura K, Kanamoto T, Itoh M, Miyashiro H, Tanaka K (1980) Dynamic mechanical behavior of chitin and chitosan. Polym Bull 2(5):301–304CrossRef Ogura K, Kanamoto T, Itoh M, Miyashiro H, Tanaka K (1980) Dynamic mechanical behavior of chitin and chitosan. Polym Bull 2(5):301–304CrossRef
37.
go back to reference Dong Y, Ruan Y, Wang H, Zhao Y, Bi D (2004) Studies on glass transition temperature of chitosan with four techniques. J Appl Polym Sci 93(4):1553–1558CrossRef Dong Y, Ruan Y, Wang H, Zhao Y, Bi D (2004) Studies on glass transition temperature of chitosan with four techniques. J Appl Polym Sci 93(4):1553–1558CrossRef
38.
go back to reference Britto DD, Campana-Filho SP (2007) Kinetics of the thermal degradation of chitosan. Thermochim Acta 465(1):73–82CrossRef Britto DD, Campana-Filho SP (2007) Kinetics of the thermal degradation of chitosan. Thermochim Acta 465(1):73–82CrossRef
39.
go back to reference Portilla-Arias JA, García-Alvarez M, Martínez de Ilarduya A, Muñoz-Guerra S (2007) Thermal decomposition of microbial poly(γ-glutamic acid) and poly(γ-glutamate)s. Polym Degrad Stabil 92(10):1916–1924CrossRef Portilla-Arias JA, García-Alvarez M, Martínez de Ilarduya A, Muñoz-Guerra S (2007) Thermal decomposition of microbial poly(γ-glutamic acid) and poly(γ-glutamate)s. Polym Degrad Stabil 92(10):1916–1924CrossRef
40.
go back to reference Puppi D, Migone C, Morelli A, Bartoli C, Gazzarri M, Pasini D, Chiellini F (2016) Microstructured chitosan/poly(-glutamic acid) polyelectrolyte complex hydrogels by computer-aided wet-spinning for biomedical three-dimensional scaffolds. J Bioact Compat Pol 31(5):531–549CrossRef Puppi D, Migone C, Morelli A, Bartoli C, Gazzarri M, Pasini D, Chiellini F (2016) Microstructured chitosan/poly(-glutamic acid) polyelectrolyte complex hydrogels by computer-aided wet-spinning for biomedical three-dimensional scaffolds. J Bioact Compat Pol 31(5):531–549CrossRef
41.
go back to reference Ho GH, Ho TI, Hsieh KH, Su YC, Lin PY, Yang J, Yang KH, Yang SC (2006) γ-polyglutamic acid produced by Bacillus subtilis (Natto): structural characteristics, chemical properties and biological functionalities. J Chin Chem Soc Taipei 53(6):1363–1384CrossRef Ho GH, Ho TI, Hsieh KH, Su YC, Lin PY, Yang J, Yang KH, Yang SC (2006) γ-polyglutamic acid produced by Bacillus subtilis (Natto): structural characteristics, chemical properties and biological functionalities. J Chin Chem Soc Taipei 53(6):1363–1384CrossRef
42.
go back to reference Lewandowska K (2009) Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures. Thermochim Acta 493(1):42–48CrossRef Lewandowska K (2009) Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures. Thermochim Acta 493(1):42–48CrossRef
43.
go back to reference Prateepchanachai S, Thakhiew W, Devahastin S, Soponronnarit S (2017) Mechanical properties improvement of chitosan films via the use of plasticizer, charge modifying agent and film solution homogenization. Carbohydr Polym 174:253CrossRef Prateepchanachai S, Thakhiew W, Devahastin S, Soponronnarit S (2017) Mechanical properties improvement of chitosan films via the use of plasticizer, charge modifying agent and film solution homogenization. Carbohydr Polym 174:253CrossRef
44.
go back to reference Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41(19):7051–7056CrossRef Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41(19):7051–7056CrossRef
45.
go back to reference Lazaridou A, Biliaderis CG (2002) Thermophysical properties of chitosan, chitosan–starch and chitosan–pullulan films near the glass transition. Carbohydr Polym 48(2):179–190CrossRef Lazaridou A, Biliaderis CG (2002) Thermophysical properties of chitosan, chitosan–starch and chitosan–pullulan films near the glass transition. Carbohydr Polym 48(2):179–190CrossRef
46.
go back to reference Kittur FS, Harish Prashanth KV, Udaya Sankar K, Tharanathan RN (2002) Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr Polym 49(2):185–193CrossRef Kittur FS, Harish Prashanth KV, Udaya Sankar K, Tharanathan RN (2002) Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr Polym 49(2):185–193CrossRef
47.
go back to reference Li Y, Guo X, Lin P, Fan C, Song Y (2010) Preparation and functional properties of blend films of gliadins and chitosan. Carbohydr Polym 81(2):484–490CrossRef Li Y, Guo X, Lin P, Fan C, Song Y (2010) Preparation and functional properties of blend films of gliadins and chitosan. Carbohydr Polym 81(2):484–490CrossRef
48.
go back to reference Chetouani A, Follain N, Marais S, Rihouey C, Elkolli M, Bounekhel M, Benachour D, Cerf DL (2017) Physicochemical properties and biological activities of novel blend films using oxidized pectin/chitosan. Int J Biol Macromol 97:348–356CrossRef Chetouani A, Follain N, Marais S, Rihouey C, Elkolli M, Bounekhel M, Benachour D, Cerf DL (2017) Physicochemical properties and biological activities of novel blend films using oxidized pectin/chitosan. Int J Biol Macromol 97:348–356CrossRef
49.
go back to reference Du Y, Zhao Y, Dai S, Yang B (2009) Preparation of water-soluble chitosan from shrimp shell and its antibacterial activity. Innov Food Sci Emerg 10(1):103–107CrossRef Du Y, Zhao Y, Dai S, Yang B (2009) Preparation of water-soluble chitosan from shrimp shell and its antibacterial activity. Innov Food Sci Emerg 10(1):103–107CrossRef
Metadata
Title
Preparation, characterization, and antimicrobial activity of poly(γ-glutamic acid)/chitosan blends
Authors
Zuolong Yu
Wangcheng Liu
Po Huo
Publication date
21-08-2018
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 5/2019
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-018-2485-9

Other articles of this Issue 5/2019

Polymer Bulletin 5/2019 Go to the issue

Premium Partners