Skip to main content
Top
Published in: Journal of Polymer Research 2/2017

01-02-2017 | ORIGINAL PAPER

Preparation, characterization and performance studies of polyethersulfone (PES) - pyrolytic carbon (PyC) composite membranes

Authors: Reza Peighami, Mohamadreza Mehrnia, Fatemeh Yazdian, Mozhgan Sheikhpour, Hamid Esmaeili

Published in: Journal of Polymer Research | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polyethersulfone (PES) is one of the most common polymers used to manufacture membranes. This work focuses on introducing and developing a novel polymer-based membrane applicable in the bio-artificial pancreas. The novel membrane based on the mixture of PES and Pyrolytic carbon (PyC) was studied and compared to PES as a reference. The PES/PyC blend membranes were characterized by top surface SEM, cross section SEM, AFM, contact angle pure water flux, insulin rejection, rejection of immune cells and molecules, and insulin diffusivity performance. In addition, the porosity of the membranes, mean pore size and mean pore density were also measured. The AFM and SEM images indicate that addition of synthesized PyC in the casting solution results in a membrane with high surface and sub-layer porosity and the addition 0.1 wt.% PyC to the casting solution reduced the surface roughness from 22.4 nm to 4.8 nm. The contact angle measurements reveal that the hydrophobicity of pure PES membrane enhanced with increasing the PyC concentration in the casting solution. With the increase of PyC from 0.0 wt.% to 0.1 wt.% in the casting solution, pure water flux reduces from 184 to 153 (L/m2h), insulin rejection reduces from 12 to 9.3%, rejection of immune cells and molecules reduce from 91.8 to 83% and insulin diffusivity increased from1.22E-8 to 1.46E-8. Furthermore, the resulting numbers for the mean pore size, mean pore density, and porosity of the PES-PyC(0.1 wt.%) membrane indicate a considerable improvement compared to pure PES membrane with increasing from 5.5 nm to 7 nm, 26 to 43 pores/area (area stand for the size of membrane surface in which pores were counted), and 68.3% to 84.6%, respectively. At the end, the statistical analysis was performed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Moriya A, Maruyama T, Ohmukai Y, Sotani T, Matsuyama H (2009) Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods. J Membr Sci 342:307–312CrossRef Moriya A, Maruyama T, Ohmukai Y, Sotani T, Matsuyama H (2009) Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods. J Membr Sci 342:307–312CrossRef
2.
go back to reference Scharp DW, Mason NS, Sparks RE (1984) Islet immune-isolation; the use of hybrid artificial organs to prevent islet tissue rejection. World J Surg 8:221CrossRef Scharp DW, Mason NS, Sparks RE (1984) Islet immune-isolation; the use of hybrid artificial organs to prevent islet tissue rejection. World J Surg 8:221CrossRef
3.
go back to reference Sakata N, Gu Y, Qi M, et al. (2006) Effect of rat-to-mouse bioartificial pancreas xenotransplantation on diabetic renal damage and survival. Pancreas 32(3):249–257CrossRef Sakata N, Gu Y, Qi M, et al. (2006) Effect of rat-to-mouse bioartificial pancreas xenotransplantation on diabetic renal damage and survival. Pancreas 32(3):249–257CrossRef
4.
go back to reference Qi M, Gu Y, Sakata N, et al. (2004) PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials 25(27):5885–5892CrossRef Qi M, Gu Y, Sakata N, et al. (2004) PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials 25(27):5885–5892CrossRef
5.
go back to reference Qi Z, Yamamoto C, Imori N, et al. (2012) Immunoisolation effect of polyvinyl alcohol (PVA) macroencapsulated islets in type 1 diabetes therapy. Cell Transplant 21(2–3):525–534CrossRef Qi Z, Yamamoto C, Imori N, et al. (2012) Immunoisolation effect of polyvinyl alcohol (PVA) macroencapsulated islets in type 1 diabetes therapy. Cell Transplant 21(2–3):525–534CrossRef
6.
go back to reference Catapano G, Iorio G, Drioli E, Lombardi CP, Crucitti F, Doglietto GB, Bellantone M (1990) Theoretical and experimental analysis of a hybrid bioartificial membrane pancreas: a distributed parameter model taking into account starling fluxes. J Membr Sci 52:351–378CrossRef Catapano G, Iorio G, Drioli E, Lombardi CP, Crucitti F, Doglietto GB, Bellantone M (1990) Theoretical and experimental analysis of a hybrid bioartificial membrane pancreas: a distributed parameter model taking into account starling fluxes. J Membr Sci 52:351–378CrossRef
7.
go back to reference Chakrabarty B, Ghoshal AK, Purkait MK (2008) Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. J Membr Sci 315:36–47CrossRef Chakrabarty B, Ghoshal AK, Purkait MK (2008) Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. J Membr Sci 315:36–47CrossRef
8.
go back to reference Machado PST, Habert AC, Borges CP (1999) Membrane formation mechanism based on precipitation kinetics and membrane morphology: flat and hollow fiber polysulfone membranes. J Membr Sci 155:171–183CrossRef Machado PST, Habert AC, Borges CP (1999) Membrane formation mechanism based on precipitation kinetics and membrane morphology: flat and hollow fiber polysulfone membranes. J Membr Sci 155:171–183CrossRef
9.
go back to reference Mulder M (1991) Basic principles of membrane technology. Kluwer Academic Publishers, DordrechtCrossRef Mulder M (1991) Basic principles of membrane technology. Kluwer Academic Publishers, DordrechtCrossRef
10.
go back to reference Paul DR, Newman S (eds) (1978) Polymer blends. Academic Press, New York Paul DR, Newman S (eds) (1978) Polymer blends. Academic Press, New York
11.
go back to reference Wienk M, Boom RM, Beerlage MAM, Bulte AMW, Smolders CA (1996) Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. J Membr Sci 113:361–371CrossRef Wienk M, Boom RM, Beerlage MAM, Bulte AMW, Smolders CA (1996) Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. J Membr Sci 113:361–371CrossRef
12.
go back to reference Jung B, Yoon JK, Kim B, Rhee HW (2004) Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes. J Membr Sci 243:45–57CrossRef Jung B, Yoon JK, Kim B, Rhee HW (2004) Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes. J Membr Sci 243:45–57CrossRef
13.
go back to reference Yeo HT, Lee ST, Han MJ (2000) Role of polymer additive in casting solution in preparation of phase inversion polysulfone membranes. J Chem Eng Jpn 33:180–185CrossRef Yeo HT, Lee ST, Han MJ (2000) Role of polymer additive in casting solution in preparation of phase inversion polysulfone membranes. J Chem Eng Jpn 33:180–185CrossRef
14.
go back to reference Boom RM, Wienk IM, Van den Boomgaard T, Smolders CA (1992) Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive. J Membr Sci 73:277–292CrossRef Boom RM, Wienk IM, Van den Boomgaard T, Smolders CA (1992) Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive. J Membr Sci 73:277–292CrossRef
15.
go back to reference Peinemann KV, Maggioni JF, Nunes SP (1998) Poly(ether imide) membranes obtained from solution in cosolvent mixtures. Polymer 39:3411CrossRef Peinemann KV, Maggioni JF, Nunes SP (1998) Poly(ether imide) membranes obtained from solution in cosolvent mixtures. Polymer 39:3411CrossRef
16.
go back to reference Feng X, Huang RYM (1996) Preparation and performance of asymmetric polyetherimide membranes for isopropanol dehydration by pervaporation. J Membr Sci 109:165CrossRef Feng X, Huang RYM (1996) Preparation and performance of asymmetric polyetherimide membranes for isopropanol dehydration by pervaporation. J Membr Sci 109:165CrossRef
17.
go back to reference Liu Y, Koops GH, Strathmann H (2003) Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution. J Membr Sci 223:187–199CrossRef Liu Y, Koops GH, Strathmann H (2003) Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution. J Membr Sci 223:187–199CrossRef
18.
go back to reference Schakenraad JM, Oosterbaan JA, Nieuwenhuis P, Molenaar I, Olijslager J, Potman W, Eenink MJD, Feijen J (1988) Biodegradable hollow fibres for the controlled release of drugs. Biomaterials 9:116–120CrossRef Schakenraad JM, Oosterbaan JA, Nieuwenhuis P, Molenaar I, Olijslager J, Potman W, Eenink MJD, Feijen J (1988) Biodegradable hollow fibres for the controlled release of drugs. Biomaterials 9:116–120CrossRef
19.
go back to reference Ellis MJ, Chaudhuri JB (2007) Poly(lactic-co-glycolic acid) hollow fiber membranes for use a tissue engineering scaffold. Biotechnol Bioeng 96:177–187CrossRef Ellis MJ, Chaudhuri JB (2007) Poly(lactic-co-glycolic acid) hollow fiber membranes for use a tissue engineering scaffold. Biotechnol Bioeng 96:177–187CrossRef
20.
go back to reference Rahimpour A, Madaeni SS, Mehdipour-Ataei S (2008) Synthesis of a novel poly(amide-imide) (PAI) and preparation and characterization of PAI blended polyethersulfone (PES) membranes. J Membr Sci 311:349–359CrossRef Rahimpour A, Madaeni SS, Mehdipour-Ataei S (2008) Synthesis of a novel poly(amide-imide) (PAI) and preparation and characterization of PAI blended polyethersulfone (PES) membranes. J Membr Sci 311:349–359CrossRef
21.
go back to reference Sawalha H, Schroen K, Boom R (2008) Mechanical properties and porosity of polylactide for biomedical applications. J Appl Polym Sci 107:82–93CrossRef Sawalha H, Schroen K, Boom R (2008) Mechanical properties and porosity of polylactide for biomedical applications. J Appl Polym Sci 107:82–93CrossRef
22.
go back to reference Gao A, Liu F, Xue L-L (2015) Controllable transition from finger-like pores to inter-connected pores of PLLA embranes. J Membr Sci 478:96–104CrossRef Gao A, Liu F, Xue L-L (2015) Controllable transition from finger-like pores to inter-connected pores of PLLA embranes. J Membr Sci 478:96–104CrossRef
23.
go back to reference Barth C, Goncalves MC, Pires ATN, Roeder J, Wolf BA (2000) Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance. J Membr Sci 169:287CrossRef Barth C, Goncalves MC, Pires ATN, Roeder J, Wolf BA (2000) Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance. J Membr Sci 169:287CrossRef
24.
go back to reference Chaturvedi BK, Ghosh AK, Ramachandhran V, Trivedi MK, HanTa MS, Misra BM (2001) Preparation, characterization and performance of polyethersulfone ultrafiltration membranes. Desalination 133:31CrossRef Chaturvedi BK, Ghosh AK, Ramachandhran V, Trivedi MK, HanTa MS, Misra BM (2001) Preparation, characterization and performance of polyethersulfone ultrafiltration membranes. Desalination 133:31CrossRef
25.
go back to reference Kim JH, Kim CK (2005) Ultrafiltration membranes prepared from blends of polyethersulfone and poly(1-vinylpyrrolidone-co-styrene) copolymers. J Membr Sci 262:60CrossRef Kim JH, Kim CK (2005) Ultrafiltration membranes prepared from blends of polyethersulfone and poly(1-vinylpyrrolidone-co-styrene) copolymers. J Membr Sci 262:60CrossRef
26.
go back to reference Zhao CS, Liu T, Lu ZP, Cheng LP, Huang J (2001) An evaluation of a polyethersulfone hollow fiber plasma separator by animal experiment. Artif Organs 25:60 Zhao CS, Liu T, Lu ZP, Cheng LP, Huang J (2001) An evaluation of a polyethersulfone hollow fiber plasma separator by animal experiment. Artif Organs 25:60
27.
go back to reference Tullis RH, Scamurra DO, Ambrus JL (2002) Affinity hemodialysis for antiviral therapy with specific application to HIV. Ther Apher 6:213CrossRef Tullis RH, Scamurra DO, Ambrus JL (2002) Affinity hemodialysis for antiviral therapy with specific application to HIV. Ther Apher 6:213CrossRef
28.
go back to reference Samtleben W, Dengler C, Reinhardt B, Nothdurft A, Lemke HD (2003) Comparison of the new polyethersulfone high-flux membrane DIAPES HF800 with conventional high-flux membranes during on-line haemodiafiltration. Nephrol Dial Transplant 18:2382CrossRef Samtleben W, Dengler C, Reinhardt B, Nothdurft A, Lemke HD (2003) Comparison of the new polyethersulfone high-flux membrane DIAPES HF800 with conventional high-flux membranes during on-line haemodiafiltration. Nephrol Dial Transplant 18:2382CrossRef
29.
go back to reference Werner C, Jacobasch H-J, Reichelt G (1996) Surface characterization of hemodialysis membranes based on streaming potential measurements. J Biomater Sci Polymer Edn 7:61CrossRef Werner C, Jacobasch H-J, Reichelt G (1996) Surface characterization of hemodialysis membranes based on streaming potential measurements. J Biomater Sci Polymer Edn 7:61CrossRef
30.
go back to reference Patner BD, Halfman AS (2013) Biomaterials science, Elsevier, 3rd Ed Patner BD, Halfman AS (2013) Biomaterials science, Elsevier, 3rd Ed
31.
go back to reference Forti S, Lunelli L, Volpe CD (2011) Hemocompatibility of pyrolytic carbon in comparison with other biomaterials. Diam Relat Mater 20:762–769CrossRef Forti S, Lunelli L, Volpe CD (2011) Hemocompatibility of pyrolytic carbon in comparison with other biomaterials. Diam Relat Mater 20:762–769CrossRef
32.
go back to reference Bashiri E (2012) Synthesis and selectivity characterization of PES membrane. Tarbiat Modares University, Tehran, Iran, Thesis for M.Sc Degree Bashiri E (2012) Synthesis and selectivity characterization of PES membrane. Tarbiat Modares University, Tehran, Iran, Thesis for M.Sc Degree
34.
go back to reference Lanza R, Langer R, Vacanti J (2014) Principles of tissue engineering, 4th edition. Elsevier, San Diego, pp 531–545 Lanza R, Langer R, Vacanti J (2014) Principles of tissue engineering, 4th edition. Elsevier, San Diego, pp 531–545
35.
go back to reference Zhao ML, Li DJ, Yuan L, Yue YC, Liu H, Sun X (2011) Differences in cytocompatibility and hemocompatibility between carbon nanotubes and nitrogen-doped carbon nanotubes. Carbon 49:3125–3133CrossRef Zhao ML, Li DJ, Yuan L, Yue YC, Liu H, Sun X (2011) Differences in cytocompatibility and hemocompatibility between carbon nanotubes and nitrogen-doped carbon nanotubes. Carbon 49:3125–3133CrossRef
36.
go back to reference Kozbial A, Li Z, Sun J (2014) Understanding the intrinsic water wettability of graphite. Carbon 74:218–225CrossRef Kozbial A, Li Z, Sun J (2014) Understanding the intrinsic water wettability of graphite. Carbon 74:218–225CrossRef
Metadata
Title
Preparation, characterization and performance studies of polyethersulfone (PES) - pyrolytic carbon (PyC) composite membranes
Authors
Reza Peighami
Mohamadreza Mehrnia
Fatemeh Yazdian
Mozhgan Sheikhpour
Hamid Esmaeili
Publication date
01-02-2017
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 2/2017
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-016-1180-5

Other articles of this Issue 2/2017

Journal of Polymer Research 2/2017 Go to the issue

Premium Partners