Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 11/2017

14-02-2017

Preparation of 3D urchin-like RGO/ZnO and its photocatalytic activity

Authors: Yi Zhou, Dandan Li, Luyue Yang, Chaocheng Li, Yuhuan Liu, Jun Lu, Yutang Wang

Published in: Journal of Materials Science: Materials in Electronics | Issue 11/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Three-dimensional urchin-like RGO/ZnO was successfully prepared for the first time by using a secondary hydrothermal method. The morphologies and hexagonal wurtzite structure of the prepared RGO/ZnO were characterized by SEM, TEM, and XRD. SEM and TEM results showed that the composite possessed a micro/nano size of about 2–4 μm, which is conducive to recycling after photocatalysis. Raman and XPS tests demonstrated that GO was reduced to RGO during the secondary hydrothermal process and that planar heterojunction occurred. Further investigation of UV–Vis diffuse reflectance spectra and RhB light degradation showed that light absorption was extended to the Vis range and even the near-infrared region after ZnO compounded with RGO, rendering the composite a viable visible-light-driven photocatalyst. Among the tested materials, the composite with 1.5 wt% RGO had the strongest integrated absorbance intensity; this material increased photocatalytic efficiency by 64.57% compared with the 3D urchin-like ZnO. Overall, the 3D urchin-like RGO/ZnO composite is an ideal visible-light-driven photocatalyst. Given the high surface area, several electronic transmission channels, large spectral response range, and p-type conductivity of RGO, the 3D urchin-like RGO/ZnO composite is expected to be applied in photovoltaic and even lithium/sodium-ion batteries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H.B. Kim, Morphology-tunable synthesis of ZnO microstructures under microwave irradiation: formation mechanisms and photocatalytic activity. CrystEngComm 18(6), B21–B22 (2016)CrossRef H.B. Kim, Morphology-tunable synthesis of ZnO microstructures under microwave irradiation: formation mechanisms and photocatalytic activity. CrystEngComm 18(6), B21–B22 (2016)CrossRef
2.
go back to reference S. Kumar, H.J. Lee, T.H. Yoon et al., Morphological control over ZnO nanostructures from self-emulsion polymerization. Cryst. Growth Des. 16, 3905–3911 (2016)CrossRef S. Kumar, H.J. Lee, T.H. Yoon et al., Morphological control over ZnO nanostructures from self-emulsion polymerization. Cryst. Growth Des. 16, 3905–3911 (2016)CrossRef
3.
go back to reference S. Baruah, C. Thanachayanont, J. Dutta, Growth of ZnO nanowires on nonwoven polyethylene fibers. Sci. Technol. Adv. Mater. 9, 025009 (2016)CrossRef S. Baruah, C. Thanachayanont, J. Dutta, Growth of ZnO nanowires on nonwoven polyethylene fibers. Sci. Technol. Adv. Mater. 9, 025009 (2016)CrossRef
4.
go back to reference L. Wang, X. Wang, S. Mao et al., Strongly enhanced ultraviolet emission of an Au@ SiO2/ZnO plasmonic hybrid nanostructure. Nanoscale 8(7), 4030–4036 (2016)CrossRef L. Wang, X. Wang, S. Mao et al., Strongly enhanced ultraviolet emission of an Au@ SiO2/ZnO plasmonic hybrid nanostructure. Nanoscale 8(7), 4030–4036 (2016)CrossRef
5.
go back to reference G. Zhang, S. Hou, H. Zhang et al., High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Adv. Mater. 27(14), 2400–2405 (2015)CrossRef G. Zhang, S. Hou, H. Zhang et al., High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Adv. Mater. 27(14), 2400–2405 (2015)CrossRef
6.
go back to reference S. Cui, Z. Dai, Q. Tian et al., Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by screen-printing method. J. Mater. Chem. C 4, 6371–6379 (2016)CrossRef S. Cui, Z. Dai, Q. Tian et al., Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by screen-printing method. J. Mater. Chem. C 4, 6371–6379 (2016)CrossRef
7.
go back to reference L. Yang, Y. Zhou, J. Lu et al., Controllable preparation of 2D and 3D ZnO micro-nanostructures and their photoelectric conversion efficiency. J. Mater. Sci: Mater. Electron. 27(2), 1693–1699 (2016) L. Yang, Y. Zhou, J. Lu et al., Controllable preparation of 2D and 3D ZnO micro-nanostructures and their photoelectric conversion efficiency. J. Mater. Sci: Mater. Electron. 27(2), 1693–1699 (2016)
8.
go back to reference J. Cui, L. Shi, T. Xie et al., UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures. Sens. Actuators B 227, 220–226 (2016)CrossRef J. Cui, L. Shi, T. Xie et al., UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures. Sens. Actuators B 227, 220–226 (2016)CrossRef
9.
go back to reference J. Liu, H. Huang, H. Zhao et al., Enhanced gas sensitivity and selectivity on aperture-controllable 3D interconnected macroesoporous ZnO nanostructures. ACS Appl Mater. Interfaces 8(13), 8583–8590 (2016)CrossRef J. Liu, H. Huang, H. Zhao et al., Enhanced gas sensitivity and selectivity on aperture-controllable 3D interconnected macroesoporous ZnO nanostructures. ACS Appl Mater. Interfaces 8(13), 8583–8590 (2016)CrossRef
10.
go back to reference S.H. Shin, Y.H. Kwon, M.H. Lee et al., A vanadium-doped ZnO nanosheets–polymer composite for flexible piezoelectric nanogenerators. Nanoscale 8(3), 1314–1321 (2016)CrossRef S.H. Shin, Y.H. Kwon, M.H. Lee et al., A vanadium-doped ZnO nanosheets–polymer composite for flexible piezoelectric nanogenerators. Nanoscale 8(3), 1314–1321 (2016)CrossRef
11.
go back to reference Z. Bai, X. Yan, Y. Li et al., 3D-branched ZnO/CdS nanowire arrays for solar water splitting and the service safety research. Adv. Energy Mater. 6(3) (2016) Z. Bai, X. Yan, Y. Li et al., 3D-branched ZnO/CdS nanowire arrays for solar water splitting and the service safety research. Adv. Energy Mater. 6(3) (2016)
12.
go back to reference Y. Wang, H.B. Fang, R.Q. Ye et al., Functionalization of ZnO aggregate films via iodine-doping and TiO2 decorating for enhanced visible-light-driven photocatalytic activity and stability. RSC Adv. 6(29), 24430–24437 (2016)CrossRef Y. Wang, H.B. Fang, R.Q. Ye et al., Functionalization of ZnO aggregate films via iodine-doping and TiO2 decorating for enhanced visible-light-driven photocatalytic activity and stability. RSC Adv. 6(29), 24430–24437 (2016)CrossRef
13.
go back to reference X. Song, Y. Liu, Y. Zheng et al., Synthesis of butterfly-like ZnO nanostructures and study of their self-reducing ability toward Au3+ ions for enhanced photocatalytic efficiency. Phys. Chem. Chem. Phys. 18(6), 4577–4584 (2016)CrossRef X. Song, Y. Liu, Y. Zheng et al., Synthesis of butterfly-like ZnO nanostructures and study of their self-reducing ability toward Au3+ ions for enhanced photocatalytic efficiency. Phys. Chem. Chem. Phys. 18(6), 4577–4584 (2016)CrossRef
14.
go back to reference P. Cheng, Y. Wang, L. Xu et al., 3D TiO2/ZnO composite nanospheres as an excellent electron transport anode for efficient dye-sensitized solar cells. RSC Adv. 6(56), 51320–51326 (2016)CrossRef P. Cheng, Y. Wang, L. Xu et al., 3D TiO2/ZnO composite nanospheres as an excellent electron transport anode for efficient dye-sensitized solar cells. RSC Adv. 6(56), 51320–51326 (2016)CrossRef
15.
go back to reference J. You, L. Meng, T.B. Song et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11(1), 75–81 (2016)CrossRef J. You, L. Meng, T.B. Song et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11(1), 75–81 (2016)CrossRef
16.
go back to reference E. Quartarone, V. Dall’Asta, A. Resmini et al., Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries. J. Power Sources 320, 314–321 (2016)CrossRef E. Quartarone, V. Dall’Asta, A. Resmini et al., Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries. J. Power Sources 320, 314–321 (2016)CrossRef
17.
go back to reference B. Han, X. Liu, X. Xing et al., A high response butanol gas sensor based on ZnO hollow spheres. Sens. Actuators B 237, 423–430 (2016)CrossRef B. Han, X. Liu, X. Xing et al., A high response butanol gas sensor based on ZnO hollow spheres. Sens. Actuators B 237, 423–430 (2016)CrossRef
18.
go back to reference Y. Miao, H. Zhang, S. Yuan et al., Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity. J. Colloid Interface Sci. 462, 9–18 (2016)CrossRef Y. Miao, H. Zhang, S. Yuan et al., Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity. J. Colloid Interface Sci. 462, 9–18 (2016)CrossRef
19.
go back to reference M.Y. Hsieh, F.I. Lai, W.C. Chen et al., Realizing omnidirectional light harvesting by employing hierarchical architecture for dye sensitized solar cells. Nanoscale 8(10), 5478–5487 (2016)CrossRef M.Y. Hsieh, F.I. Lai, W.C. Chen et al., Realizing omnidirectional light harvesting by employing hierarchical architecture for dye sensitized solar cells. Nanoscale 8(10), 5478–5487 (2016)CrossRef
20.
go back to reference Y.K. Mishra, G. Modi, V. Cretu et al., Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Appl Mater. Interfaces 7(26), 14303–14316 (2015)CrossRef Y.K. Mishra, G. Modi, V. Cretu et al., Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Appl Mater. Interfaces 7(26), 14303–14316 (2015)CrossRef
21.
go back to reference W. Li, S. Gao, L. Li et al., Hydrothermal synthesis of a 3D double-sided comb-like ZnO nanostructure and its growth mechanism analysis. Chem. Commun. 52, 8231–8234 (2016)CrossRef W. Li, S. Gao, L. Li et al., Hydrothermal synthesis of a 3D double-sided comb-like ZnO nanostructure and its growth mechanism analysis. Chem. Commun. 52, 8231–8234 (2016)CrossRef
22.
go back to reference D. He, X. Sheng, J. Yang et al., \([10\overline{10}]\) Oriented multichannel ZnO nanowire arrays with enhanced optoelectronic device performance. J. Am. Chem. Soc. 136(48), 16772–16775 (2014) D. He, X. Sheng, J. Yang et al., \([10\overline{10}]\) Oriented multichannel ZnO nanowire arrays with enhanced optoelectronic device performance. J. Am. Chem. Soc. 136(48), 16772–16775 (2014)
23.
go back to reference N.T. Khoa, S.W. Kim, D.H. Yoo et al., Fabrication of Au/graphene-wrapped ZnO-nanoparticle-assembled hollow spheres with effective photoinduced charge transfer for photocatalysis. ACS Appl Mater. Interfaces 7(6), 3524–3531 (2015)CrossRef N.T. Khoa, S.W. Kim, D.H. Yoo et al., Fabrication of Au/graphene-wrapped ZnO-nanoparticle-assembled hollow spheres with effective photoinduced charge transfer for photocatalysis. ACS Appl Mater. Interfaces 7(6), 3524–3531 (2015)CrossRef
24.
go back to reference W. Liu, J. Cai, Z. Li, Self-assembly of semiconductor nanoparticles/reduced graphene oxide (RGO) composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis. ACS Sustain. Chem. Eng. 3(2), 277–282 (2015)CrossRef W. Liu, J. Cai, Z. Li, Self-assembly of semiconductor nanoparticles/reduced graphene oxide (RGO) composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis. ACS Sustain. Chem. Eng. 3(2), 277–282 (2015)CrossRef
25.
go back to reference X. Men, H. Chen, K. Chang et al., Three-dimensional free-standing ZnO/graphene composite foam for photocurrent generation and photocatalytic activity. Appl. Catal. B 187, 367–374 (2016)CrossRef X. Men, H. Chen, K. Chang et al., Three-dimensional free-standing ZnO/graphene composite foam for photocurrent generation and photocatalytic activity. Appl. Catal. B 187, 367–374 (2016)CrossRef
26.
go back to reference S. Xu, L. Fu, T.S.H. Pham et al., Preparation of ZnO flower/reduced graphene oxide composite with enhanced photocatalytic performance under sunlight. Ceram. Int. 41(3), 4007–4013 (2015)CrossRef S. Xu, L. Fu, T.S.H. Pham et al., Preparation of ZnO flower/reduced graphene oxide composite with enhanced photocatalytic performance under sunlight. Ceram. Int. 41(3), 4007–4013 (2015)CrossRef
27.
go back to reference A.R. Marlinda, N.M. Huang, M.R. Muhamad et al., Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater. Lett. 80, 9–12 (2012)CrossRef A.R. Marlinda, N.M. Huang, M.R. Muhamad et al., Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater. Lett. 80, 9–12 (2012)CrossRef
28.
go back to reference X. Zhang, J. Dong, X. Qian et al., One-pot synthesis of an RGO/ZnO nanocomposite on zinc foil and its excellent performance for the nonenzymatic sensing of xanthine. Sens. Actuators B 221, 528–536 (2015)CrossRef X. Zhang, J. Dong, X. Qian et al., One-pot synthesis of an RGO/ZnO nanocomposite on zinc foil and its excellent performance for the nonenzymatic sensing of xanthine. Sens. Actuators B 221, 528–536 (2015)CrossRef
29.
go back to reference X. Chen, H. Guo, T. Wang et al., In-situ fabrication of reduced graphene oxide (rGO)/ZnO heterostructure: surface functional groups induced electrical properties. Electrochim. Acta 196, 558–564 (2016)CrossRef X. Chen, H. Guo, T. Wang et al., In-situ fabrication of reduced graphene oxide (rGO)/ZnO heterostructure: surface functional groups induced electrical properties. Electrochim. Acta 196, 558–564 (2016)CrossRef
30.
go back to reference X.D. Tang, H.Q. Ye, H.X. Hu, Sulfurization synthesis and photocatalytic activity of oxysulfide La3NbS2O5. Trans. Nonferrous Met. Soc. China 23, 2644–2649 (2013)CrossRef X.D. Tang, H.Q. Ye, H.X. Hu, Sulfurization synthesis and photocatalytic activity of oxysulfide La3NbS2O5. Trans. Nonferrous Met. Soc. China 23, 2644–2649 (2013)CrossRef
31.
go back to reference W. Kang, X. Jimeng et al., The effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites. Appl. Surf. Sci. 360, 270–275 (2016)CrossRef W. Kang, X. Jimeng et al., The effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites. Appl. Surf. Sci. 360, 270–275 (2016)CrossRef
32.
go back to reference P. Chhetri, K.K. Barakoti, M.A. Alpuche-Aviles, Control of carrier recombination on ZnO nanowires photoelectrochemistry. J. Phys. Chem. C 119, 1506–1516 (2015)CrossRef P. Chhetri, K.K. Barakoti, M.A. Alpuche-Aviles, Control of carrier recombination on ZnO nanowires photoelectrochemistry. J. Phys. Chem. C 119, 1506–1516 (2015)CrossRef
33.
go back to reference S.U. Awan, S.K. Hasanain, M. Aftab, Influence of Li1+ co-doping defects on luminescence and bandgap narrowing of ZnO:Co2+ nanoparticles due to band tailing effects. J. Lumin. 172, 231–242 (2016)CrossRef S.U. Awan, S.K. Hasanain, M. Aftab, Influence of Li1+ co-doping defects on luminescence and bandgap narrowing of ZnO:Co2+ nanoparticles due to band tailing effects. J. Lumin. 172, 231–242 (2016)CrossRef
34.
go back to reference Y. Zhou, Y. Wu, Y. Li et al., The synthesis of 3D urchin-like TiO2-reduced graphene micro/nano structure composite and its enhanced photocatalytic properties. Ceram. Int. 42, 12482–12489 (2016)CrossRef Y. Zhou, Y. Wu, Y. Li et al., The synthesis of 3D urchin-like TiO2-reduced graphene micro/nano structure composite and its enhanced photocatalytic properties. Ceram. Int. 42, 12482–12489 (2016)CrossRef
35.
go back to reference A.L. Palma, L. Cin, S. Pescetelli et al., Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy 22, 349–360 (2016) A.L. Palma, L. Cin, S. Pescetelli et al., Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy 22, 349–360 (2016)
36.
go back to reference U. Siemon, D. Bahnemann, J.J. Testa et al., Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. J. Photochem. Photobiol. A 148(1), 247–255 (2002)CrossRef U. Siemon, D. Bahnemann, J.J. Testa et al., Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. J. Photochem. Photobiol. A 148(1), 247–255 (2002)CrossRef
Metadata
Title
Preparation of 3D urchin-like RGO/ZnO and its photocatalytic activity
Authors
Yi Zhou
Dandan Li
Luyue Yang
Chaocheng Li
Yuhuan Liu
Jun Lu
Yutang Wang
Publication date
14-02-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 11/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-6495-4

Other articles of this Issue 11/2017

Journal of Materials Science: Materials in Electronics 11/2017 Go to the issue