Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 23/2017

24-08-2017

Preparation of poly(vinyl alcohol)-based separator with pore-forming additive for lithium-ion batteries

Authors: Wei Xiao, Kaiyue Zhang, Jianguo Liu, Chuanwei Yan

Published in: Journal of Materials Science: Materials in Electronics | Issue 23/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, poly(vinyl alcohol) (PVA)-based separators with microporous structure were prepared from a casting solution composed of PVA resin, water as solvent, and poly(vinyl pyrrolidone) (PVP) polymer as pore controlling additive by non-solvent induced phase separation (NIPS) wet-process and investigated in lithium-ion batteries. The effects of PVP on the morphology and properties of the separator, such as porosity, electrolyte wettability, thermal stability and battery performance (discharge capacity, C-rate capability and cycleability) were systematically analyzed. Results show that PVP induced more pores on the bottom surfaces and the electrolyte uptake, ionic conductivity was further improved. Finally, a 10 wt% PVA-based separator with PVP solid content of 6 wt% exhibited greatly improved porosity, electrolyte uptake, ion conductivity and thermal resistance, resulting in the cell with high safety performance and matched electrochemical performance. The results demonstrated that the PVA-based separator with PVP as pore controlling additive can be a successful candidate serving as an effective separator for lithium-ion battery. Additionally, the present method of producing the microporous separator for LIBs is simple, environmentally benign and economically viable.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Dunn, H. Kamath, J.M. Tarascon et al., Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)CrossRef B. Dunn, H. Kamath, J.M. Tarascon et al., Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)CrossRef
2.
go back to reference J. Hassoun, S. Panero, P. Reale et al., A new, safe, high rate and high-energy polymer lithium-ion battery. Adv. Mater. 21, 4807–4810 (2009)CrossRef J. Hassoun, S. Panero, P. Reale et al., A new, safe, high rate and high-energy polymer lithium-ion battery. Adv. Mater. 21, 4807–4810 (2009)CrossRef
3.
go back to reference Y.K. Sun, S.T. Myung, B.C. Park et al., High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009)CrossRef Y.K. Sun, S.T. Myung, B.C. Park et al., High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009)CrossRef
4.
go back to reference S.S. Zhang, A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 164, 351–364 (2007)CrossRef S.S. Zhang, A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 164, 351–364 (2007)CrossRef
5.
go back to reference C.M. Costa, M.M. Silva, S.L. Mendez et al., Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Adv. 3, 11404–11417 (2013)CrossRef C.M. Costa, M.M. Silva, S.L. Mendez et al., Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Adv. 3, 11404–11417 (2013)CrossRef
6.
go back to reference M.H. Ryou, Y.M. Lee, J.K. Park et al., Mussel-inspired poly dopamine treated polyethylene separators for high power Li-ion batteries. Adv. Mater. 23, 3066–3070 (2011)CrossRef M.H. Ryou, Y.M. Lee, J.K. Park et al., Mussel-inspired poly dopamine treated polyethylene separators for high power Li-ion batteries. Adv. Mater. 23, 3066–3070 (2011)CrossRef
7.
go back to reference P. Arora, Z.M. Zhang, Battery separators. Chem. Rev. 104, 4419–4462 (2004)CrossRef P. Arora, Z.M. Zhang, Battery separators. Chem. Rev. 104, 4419–4462 (2004)CrossRef
8.
go back to reference J.A. Choi, S.H. Kim, D.W. Kim, Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J. Power Sources 195, 6192–6196 (2010)CrossRef J.A. Choi, S.H. Kim, D.W. Kim, Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J. Power Sources 195, 6192–6196 (2010)CrossRef
9.
go back to reference M. Kim, G.Y. Han, K.J. Yoon et al., Preparation of a trilayer separator and its application to lithium-ion batteries. J. Power Sources 195, 8302–8305 (2010)CrossRef M. Kim, G.Y. Han, K.J. Yoon et al., Preparation of a trilayer separator and its application to lithium-ion batteries. J. Power Sources 195, 8302–8305 (2010)CrossRef
10.
go back to reference Y.J. Lv, B. Go, Mesoporous silica particles-embedded high performance separator for lithium-ion batteries. J. Mater. Sci. 28, 6512–6519 (2017) Y.J. Lv, B. Go, Mesoporous silica particles-embedded high performance separator for lithium-ion batteries. J. Mater. Sci. 28, 6512–6519 (2017)
11.
go back to reference H.S. Jeong, S.Y. Lee, Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. J. Power Sources 196, 6716–6722 (2011)CrossRef H.S. Jeong, S.Y. Lee, Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. J. Power Sources 196, 6716–6722 (2011)CrossRef
12.
go back to reference R.Y. Miao, B.W. Liu, Z.Z. Zhu et al., PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries. J. Power Sources 184, 420–426 (2008)CrossRef R.Y. Miao, B.W. Liu, Z.Z. Zhu et al., PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries. J. Power Sources 184, 420–426 (2008)CrossRef
13.
go back to reference Y.H. Ding, P. Zhang, Z.L. Long et al., Preparation of PVdF-based electrospun membranes and their application as separators. Sci. Technol. Adv. Mater. 9, 015005 (2008)CrossRef Y.H. Ding, P. Zhang, Z.L. Long et al., Preparation of PVdF-based electrospun membranes and their application as separators. Sci. Technol. Adv. Mater. 9, 015005 (2008)CrossRef
14.
go back to reference K.J. Kim, H.K. Kwon, M.S. Park et al., Ceramic composite separators coated with moisturized ZrO2 nanoparticles for improving the electrochemical performance and thermal stability of lithium ion batteries. Phys. Chem. Chem. Phys. 16, 9337–9343 (2014)CrossRef K.J. Kim, H.K. Kwon, M.S. Park et al., Ceramic composite separators coated with moisturized ZrO2 nanoparticles for improving the electrochemical performance and thermal stability of lithium ion batteries. Phys. Chem. Chem. Phys. 16, 9337–9343 (2014)CrossRef
15.
go back to reference F. Croce, M.L. Focarete, J. Hassoun et al., High-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning. Energy Environ. Sci. 4, 921–927 (2011)CrossRef F. Croce, M.L. Focarete, J. Hassoun et al., High-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning. Energy Environ. Sci. 4, 921–927 (2011)CrossRef
16.
go back to reference W. Qi, C. Lu, P. Chen et al., Electrochemical performances and thermal properties of electrospun poly(phthalazinone ether sulfone ketone) membrane for lithium-ion battery. Mater. Lett. 66, 239–241 (2012)CrossRef W. Qi, C. Lu, P. Chen et al., Electrochemical performances and thermal properties of electrospun poly(phthalazinone ether sulfone ketone) membrane for lithium-ion battery. Mater. Lett. 66, 239–241 (2012)CrossRef
17.
go back to reference Y.E. Miao, G.N. Zhu, H.Q. Hou et al., Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J. Power Sources 226, 82–86 (2013)CrossRef Y.E. Miao, G.N. Zhu, H.Q. Hou et al., Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J. Power Sources 226, 82–86 (2013)CrossRef
18.
go back to reference J. Shayapat, O.H. Chung, J.S. Park, Electrospun polyimide-composite separator for lithium-ion batteries. Electrochim. Acta 170, 110–121 (2015)CrossRef J. Shayapat, O.H. Chung, J.S. Park, Electrospun polyimide-composite separator for lithium-ion batteries. Electrochim. Acta 170, 110–121 (2015)CrossRef
19.
go back to reference J.H. Lee, J. Manuel, H. Choi et al., Partially oxidized polyacrylonitrile nanofibrous membrane as a thermally stable separator for lithium ion batteries. Polymer 68, 335–343 (2015)CrossRef J.H. Lee, J. Manuel, H. Choi et al., Partially oxidized polyacrylonitrile nanofibrous membrane as a thermally stable separator for lithium ion batteries. Polymer 68, 335–343 (2015)CrossRef
20.
go back to reference Y.J. Kim, H.S. Kim, C.H. Doh et al., Technological potential and issues of polyacrylonitrile based nanofiber non-woven separator for Li-ion rechargeable batteries. J. Power Sources 244, 196–206 (2013)CrossRef Y.J. Kim, H.S. Kim, C.H. Doh et al., Technological potential and issues of polyacrylonitrile based nanofiber non-woven separator for Li-ion rechargeable batteries. J. Power Sources 244, 196–206 (2013)CrossRef
21.
go back to reference M. Yanilmaz, M. Dirican, X.W. Zhang, Evaluation of electrospun SiO2/nylon 6, 6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochim. Acta 133, 501–508 (2014)CrossRef M. Yanilmaz, M. Dirican, X.W. Zhang, Evaluation of electrospun SiO2/nylon 6, 6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochim. Acta 133, 501–508 (2014)CrossRef
22.
go back to reference J.L. Hao, G.T. Lei, Z.H. Li et al., A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. J. Membr. Sci. 428, 11–16 (2013)CrossRef J.L. Hao, G.T. Lei, Z.H. Li et al., A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. J. Membr. Sci. 428, 11–16 (2013)CrossRef
23.
go back to reference H. Lee, M. Yanilmaz, O. Toprakci et al., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7, 3857–3886 (2014)CrossRef H. Lee, M. Yanilmaz, O. Toprakci et al., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7, 3857–3886 (2014)CrossRef
24.
go back to reference G.R. Guillen, Y.J. Pan, M.H. Li et al., Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 50, 3798–3817 (2011)CrossRef G.R. Guillen, Y.J. Pan, M.H. Li et al., Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 50, 3798–3817 (2011)CrossRef
25.
go back to reference Q.Z. Xia, X.Z. Wang, W. Li et al., Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery. J. Membr. Sci. 334, 117–122 (2009)CrossRef Q.Z. Xia, X.Z. Wang, W. Li et al., Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery. J. Membr. Sci. 334, 117–122 (2009)CrossRef
26.
go back to reference J.Q. Zhang, B. Sun, X.D. Huang et al., Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci. Rep. 4, 6007 (2014)CrossRef J.Q. Zhang, B. Sun, X.D. Huang et al., Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci. Rep. 4, 6007 (2014)CrossRef
27.
go back to reference X.S. Huang, A lithium-ion battery separator prepared using a phase inversion process. J. Power Sources 216, 216–221 (2012)CrossRef X.S. Huang, A lithium-ion battery separator prepared using a phase inversion process. J. Power Sources 216, 216–221 (2012)CrossRef
28.
go back to reference H.J. Wang, T.P. Wang, S.Y. Yang et al., Preparation of thermal stable porous polyimide membranes by phase inversion process for lithium-ion battery. Polymer 54, 6339–6348 (2013)CrossRef H.J. Wang, T.P. Wang, S.Y. Yang et al., Preparation of thermal stable porous polyimide membranes by phase inversion process for lithium-ion battery. Polymer 54, 6339–6348 (2013)CrossRef
29.
go back to reference H. Zhang, C.E. Lin, M.Y. Zhou et al., High thermal resistance polyimide separators prepared via soluble precusor and non-solvent induced phase separation process for lithium ion batteries. Electrochim. Acta 187, 125–133 (2016)CrossRef H. Zhang, C.E. Lin, M.Y. Zhou et al., High thermal resistance polyimide separators prepared via soluble precusor and non-solvent induced phase separation process for lithium ion batteries. Electrochim. Acta 187, 125–133 (2016)CrossRef
30.
go back to reference Z. Tian, X.M. He, W.H. Pu et al., Preparation of poly(acrylonitrile–butyl acrylate) gel electrolyte for lithium-ion batteries. Electrochim. Acta 52, 688–693 (2006)CrossRef Z. Tian, X.M. He, W.H. Pu et al., Preparation of poly(acrylonitrile–butyl acrylate) gel electrolyte for lithium-ion batteries. Electrochim. Acta 52, 688–693 (2006)CrossRef
31.
go back to reference G. Wu, H.Y. Yang, H.Z. Chen et al., Novel porous polymer electrolyte based on polyacrylonitrile. Mater. Chem. Phys. 104, 284–287 (2007)CrossRef G. Wu, H.Y. Yang, H.Z. Chen et al., Novel porous polymer electrolyte based on polyacrylonitrile. Mater. Chem. Phys. 104, 284–287 (2007)CrossRef
32.
go back to reference W.S. Lyoo, W.S. Ha, Structure and properties of microfibrillar poly(vinyl alcohol) fibres prepared by saponification under shearing force of poly(vinyl pivalate). Polymer 37, 3121–3129 (1996)CrossRef W.S. Lyoo, W.S. Ha, Structure and properties of microfibrillar poly(vinyl alcohol) fibres prepared by saponification under shearing force of poly(vinyl pivalate). Polymer 37, 3121–3129 (1996)CrossRef
33.
go back to reference M. Muthuvinayagam, C. Gopinathan, Characterization of proton conducting polymer blend electrolytes based on PVdF-PVA. Polymer 68, 122–130 (2015)CrossRef M. Muthuvinayagam, C. Gopinathan, Characterization of proton conducting polymer blend electrolytes based on PVdF-PVA. Polymer 68, 122–130 (2015)CrossRef
34.
go back to reference W. Luo, S.C. Zhang, P. Li et al., Surfactant-free CO2-in-water emulsion-templated poly (vinyl alcohol) (PVA) hydrogels. Polymer 61, 183–191 (2015)CrossRef W. Luo, S.C. Zhang, P. Li et al., Surfactant-free CO2-in-water emulsion-templated poly (vinyl alcohol) (PVA) hydrogels. Polymer 61, 183–191 (2015)CrossRef
35.
go back to reference W. Xiao, L.N. Zhao, Y.Q. Gong et al., Preparation and performance of poly (vinyl alcohol) porous separator for lithium-ion batteries. J. Membr. Sci. 487, 221–228 (2015)CrossRef W. Xiao, L.N. Zhao, Y.Q. Gong et al., Preparation and performance of poly (vinyl alcohol) porous separator for lithium-ion batteries. J. Membr. Sci. 487, 221–228 (2015)CrossRef
36.
go back to reference P. Kritzer, Nonwoven support material for improved separators in Li–polymer batteries. J. Power Sources 161, 1335–1340 (2006)CrossRef P. Kritzer, Nonwoven support material for improved separators in Li–polymer batteries. J. Power Sources 161, 1335–1340 (2006)CrossRef
37.
go back to reference J. Steiger, G. Richter, M. Wenk et al., Comparison of the growth of lithium filaments and dendrites under different conditions. Electrochem. Commun. 50, 11–14 (2015)CrossRef J. Steiger, G. Richter, M. Wenk et al., Comparison of the growth of lithium filaments and dendrites under different conditions. Electrochem. Commun. 50, 11–14 (2015)CrossRef
38.
go back to reference M. Xia, Q.Z. Liu, Z. Zhou et al., A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene) /poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator. J. Power Sources 266, 29–35 (2014)CrossRef M. Xia, Q.Z. Liu, Z. Zhou et al., A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene) /poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator. J. Power Sources 266, 29–35 (2014)CrossRef
39.
go back to reference T.H. Young, L.W. Chen, Pore formation mechanism of membranes from phase inversion process. Desalination 103, 233–247 (1995)CrossRef T.H. Young, L.W. Chen, Pore formation mechanism of membranes from phase inversion process. Desalination 103, 233–247 (1995)CrossRef
Metadata
Title
Preparation of poly(vinyl alcohol)-based separator with pore-forming additive for lithium-ion batteries
Authors
Wei Xiao
Kaiyue Zhang
Jianguo Liu
Chuanwei Yan
Publication date
24-08-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 23/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7687-7

Other articles of this Issue 23/2017

Journal of Materials Science: Materials in Electronics 23/2017 Go to the issue