Skip to main content
Top
Published in: Fibers and Polymers 4/2024

19-03-2024 | Regular Article

Preparation of the Composite Yarn PEDOT:PSS/rGO/PAN/DL and Its Application in Sodium-Ion Detection

Authors: Zhilei Li, Jianping Zhou, Yan Xu, Yukui Shang, Changhua Chen, Tongtong Ran

Published in: Fibers and Polymers | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Effective farmland management requires real-time monitoring of plant growth status and timely response to stressors. To achieve this goal, we utilized wire organic electrochemical transistors (WECTs) to convert ion signals in plant vasculature into electrical signals in circuits, enabling the detection of ion concentrations. In our study, we employed a flexible substrate composed of a core-sheath structure nanofiber yarn impregnated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) as a semiconductor channel. The gate was made of silver wire, while silver paste was sprayed at both ends of the core-sheath yarn to serve as a source and drain. This configuration allowed us to construct a wire organic electrochemical transistor that exhibited modulation performance and sensitivity at low voltages, with a transconductance of 1.07 × 10–4 S. We conducted sodium ion concentration testing and successfully achieved the sensing of sodium ions at concentrations ranging from 10–4 to 10–1 M. This study lays the groundwork for the future development of organic electrochemical transistors in plants, enabling in situ detection of sodium ion concentrations under salt stress.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference M. Sneha, N.A. Ravindranath, N. Murugesan, V. Jayaraman, A biosensor for monitoring of salt stress in plants. Org. Electron. 113, 106698 (2023)CrossRef M. Sneha, N.A. Ravindranath, N. Murugesan, V. Jayaraman, A biosensor for monitoring of salt stress in plants. Org. Electron. 113, 106698 (2023)CrossRef
2.
go back to reference A. Armada-Moreira, C. Diacci, A.M. Dar, M. Berggren, D.T. Simon, E. Stavrinidou, Benchmarking organic electrochemical transistors for plant electrophysiology. Front. Plant Sci. 13, 1–11 (2022)CrossRef A. Armada-Moreira, C. Diacci, A.M. Dar, M. Berggren, D.T. Simon, E. Stavrinidou, Benchmarking organic electrochemical transistors for plant electrophysiology. Front. Plant Sci. 13, 1–11 (2022)CrossRef
4.
go back to reference F. Vurro, E. Marchetti, M. Bettelli, L. Manfrini, A. Finco, C. Sportolaro, N. Coppedè, N. Palermo, M.G. Tommasini, A. Zappettini, M. Janni, Application of the OECT-based in vivo biosensor bioristor in fruit tree monitoring to improve agricultural sustainability. Chemosensors. 11(7), 374 (2023)CrossRef F. Vurro, E. Marchetti, M. Bettelli, L. Manfrini, A. Finco, C. Sportolaro, N. Coppedè, N. Palermo, M.G. Tommasini, A. Zappettini, M. Janni, Application of the OECT-based in vivo biosensor bioristor in fruit tree monitoring to improve agricultural sustainability. Chemosensors. 11(7), 374 (2023)CrossRef
5.
go back to reference F. Vurro, R. Manfredi, M. Bettelli, G. Bocci, A.L. Cologni, S. Cornali, R. Reggiani, E. Marchetti, N. Coppedè, S. Caselli, A. Zappettini, M. Janni, In vivo sensing to monitor tomato plants in field conditions and optimize crop water management. Precis. Agric. 24(6), 2479–2499 (2023)CrossRef F. Vurro, R. Manfredi, M. Bettelli, G. Bocci, A.L. Cologni, S. Cornali, R. Reggiani, E. Marchetti, N. Coppedè, S. Caselli, A. Zappettini, M. Janni, In vivo sensing to monitor tomato plants in field conditions and optimize crop water management. Precis. Agric. 24(6), 2479–2499 (2023)CrossRef
7.
go back to reference N. Coppedè, M. Janni, M. Bettelli, C.L. Maida, F. Gentile, M. Villani, R. Ruotolo, S. Iannotta, N. Marmiroli, M. Marmiroli, A. Zappettini, An in vivo biosensing, biomimetic electrochemical transistor with applications in plant science and precision farming. Sci. Rep. 7, 1–9 (2017)CrossRef N. Coppedè, M. Janni, M. Bettelli, C.L. Maida, F. Gentile, M. Villani, R. Ruotolo, S. Iannotta, N. Marmiroli, M. Marmiroli, A. Zappettini, An in vivo biosensing, biomimetic electrochemical transistor with applications in plant science and precision farming. Sci. Rep. 7, 1–9 (2017)CrossRef
8.
go back to reference F. Vurro, M. Janni, N. Coppedè, F. Gentile, R. Manfredi, M. Bettelli, A. Zappettini, Development of an in vivo sensor to monitor the effects of vapor pressure deficit (VPD) changes to improve water productivity in agriculture. Sensors (Switzerland) 19(21), 4667 (2019)CrossRef F. Vurro, M. Janni, N. Coppedè, F. Gentile, R. Manfredi, M. Bettelli, A. Zappettini, Development of an in vivo sensor to monitor the effects of vapor pressure deficit (VPD) changes to improve water productivity in agriculture. Sensors (Switzerland) 19(21), 4667 (2019)CrossRef
9.
go back to reference Y. Wang, Y. Wang, R. Zhu, Y. Tao, Y. Chen, Q. Liu, X. Liu, D. Wang, Woven fiber organic electrochemical transistors based on multiwalled carbon nanotube functionalized PEDOT nanowires for nondestructive detection of potassium ions. Mater. Sci. Eng. B 278, 115657 (2022)CrossRef Y. Wang, Y. Wang, R. Zhu, Y. Tao, Y. Chen, Q. Liu, X. Liu, D. Wang, Woven fiber organic electrochemical transistors based on multiwalled carbon nanotube functionalized PEDOT nanowires for nondestructive detection of potassium ions. Mater. Sci. Eng. B 278, 115657 (2022)CrossRef
10.
go back to reference N. Coppedè, M. Giannetto, M. Villani, V. Lucchini, E. Battista, M. Careri, A. Zappettini, Ion selective textile organic electrochemical transistor for wearable sweat monitoring. Org. Electron. 78, 105579 (2020)CrossRef N. Coppedè, M. Giannetto, M. Villani, V. Lucchini, E. Battista, M. Careri, A. Zappettini, Ion selective textile organic electrochemical transistor for wearable sweat monitoring. Org. Electron. 78, 105579 (2020)CrossRef
11.
go back to reference R.R. Nair, Organic electrochemical transistor on paper for the detection of halide anions in biological analytes. Flex. Print. Electron. 5, 045004 (2020)CrossRef R.R. Nair, Organic electrochemical transistor on paper for the detection of halide anions in biological analytes. Flex. Print. Electron. 5, 045004 (2020)CrossRef
12.
go back to reference C. Liao, M. Zhang, L. Niu, Z. Zheng, F. Yan, Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. J. Mater. Chem. B. 1, 3820–3829 (2013)CrossRefPubMed C. Liao, M. Zhang, L. Niu, Z. Zheng, F. Yan, Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. J. Mater. Chem. B. 1, 3820–3829 (2013)CrossRefPubMed
13.
go back to reference S.K. Kanakamedala, H.T. Alshakhouri, M. Agarwal, M.A. Decoster, A simple polymer based electrochemical transistor for micromolar glucose sensing. Sens. Actuators, B Chem. 157, 92–97 (2011)CrossRef S.K. Kanakamedala, H.T. Alshakhouri, M. Agarwal, M.A. Decoster, A simple polymer based electrochemical transistor for micromolar glucose sensing. Sens. Actuators, B Chem. 157, 92–97 (2011)CrossRef
14.
go back to reference R.X. He, M. Zhang, F. Tan, P.H.M. Leung, X.Z. Zhao, H.L.W. Chan, M. Yang, F. Yan, Detection of bacteria with organic electrochemical transistors. J. Mater. Chem. 22, 22072–22076 (2012)CrossRef R.X. He, M. Zhang, F. Tan, P.H.M. Leung, X.Z. Zhao, H.L.W. Chan, M. Yang, F. Yan, Detection of bacteria with organic electrochemical transistors. J. Mater. Chem. 22, 22072–22076 (2012)CrossRef
15.
go back to reference H. Tang, P. Lin, H.L.W. Chan, F. Yan, Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens. Bioelectron.. Bioelectron. 26, 4559–4563 (2011)CrossRef H. Tang, P. Lin, H.L.W. Chan, F. Yan, Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens. Bioelectron.. Bioelectron. 26, 4559–4563 (2011)CrossRef
16.
go back to reference C. Xiong, H. Qu, W. Chen, L. Zhang, L. Qiu, L. Zheng, F. Xia, Real-time detection of Cu(II) with PEDOT: PSS based organic electrochemical transistors. Sci. China Chem. 60, 1205–1211 (2017)CrossRef C. Xiong, H. Qu, W. Chen, L. Zhang, L. Qiu, L. Zheng, F. Xia, Real-time detection of Cu(II) with PEDOT: PSS based organic electrochemical transistors. Sci. China Chem. 60, 1205–1211 (2017)CrossRef
17.
go back to reference Y. Wang, Z. Zhou, X. Qing, W. Zhong, Q. Liu, W. Wang, M. Li, K. Liu, D. Wang, Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection. Anal. Bioanal. Chem.Bioanal. Chem. 408, 5779–5787 (2016)CrossRef Y. Wang, Z. Zhou, X. Qing, W. Zhong, Q. Liu, W. Wang, M. Li, K. Liu, D. Wang, Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection. Anal. Bioanal. Chem.Bioanal. Chem. 408, 5779–5787 (2016)CrossRef
18.
go back to reference C. Diacci, T. Abedi, J.W. Lee, E.O. Gabrielsson, M. Berggren, D.T. Simon, T. Niittylä, E. Stavrinidou, Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors. iScience. 24(1), 101966 (2021)CrossRefPubMed C. Diacci, T. Abedi, J.W. Lee, E.O. Gabrielsson, M. Berggren, D.T. Simon, T. Niittylä, E. Stavrinidou, Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors. iScience. 24(1), 101966 (2021)CrossRefPubMed
19.
go back to reference G. Tarabella, M. Villani, D. Calestani, R. Mosca, S. Iannotta, A. Zappettini, N. Coppedè, A single cotton fiber organic electrochemical transistor for liquid electrolyte saline sensing. J. Mater. Chem. 22, 23830–23834 (2012)CrossRef G. Tarabella, M. Villani, D. Calestani, R. Mosca, S. Iannotta, A. Zappettini, N. Coppedè, A single cotton fiber organic electrochemical transistor for liquid electrolyte saline sensing. J. Mater. Chem. 22, 23830–23834 (2012)CrossRef
20.
go back to reference A. Yang, Y. Li, C. Yang, Y. Fu, N. Wang, L. Li, F. Yan, Fabric organic electrochemical transistors for biosensors. Adv. Mater. 30, 1–8 (2018) A. Yang, Y. Li, C. Yang, Y. Fu, N. Wang, L. Li, F. Yan, Fabric organic electrochemical transistors for biosensors. Adv. Mater. 30, 1–8 (2018)
21.
go back to reference X. Qing, Y. Wang, Y. Zhang, X. Ding, W. Zhong, D. Wang, W. Wang, Q. Liu, K. Liu, M. Li, Z. Lu, Wearable fiber-based organic electrochemical transistors as a platform for highly sensitive dopamine monitoring. ACS Appl. Mater. Interfaces 11, 13105–13113 (2019)CrossRefPubMed X. Qing, Y. Wang, Y. Zhang, X. Ding, W. Zhong, D. Wang, W. Wang, Q. Liu, K. Liu, M. Li, Z. Lu, Wearable fiber-based organic electrochemical transistors as a platform for highly sensitive dopamine monitoring. ACS Appl. Mater. Interfaces 11, 13105–13113 (2019)CrossRefPubMed
22.
go back to reference Y. Liu, X. Li, J.C. Lü, Electrically conductive poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid/polyacrylonitrile composite fibers prepared by wet spinning. J. Appl. Polym. Sci.Polym. Sci. 130, 370–374 (2013)CrossRef Y. Liu, X. Li, J.C. Lü, Electrically conductive poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid/polyacrylonitrile composite fibers prepared by wet spinning. J. Appl. Polym. Sci.Polym. Sci. 130, 370–374 (2013)CrossRef
23.
go back to reference V.C. Tran, G.G. Mastantuoni, M. Zabihipour, L. Li, L. Berglund, M. Berggren, Q. Zhou, I. Engquista, Electrical current modulation in wood electrochemical transistor. PNAS 120, 1–7 (2023)CrossRef V.C. Tran, G.G. Mastantuoni, M. Zabihipour, L. Li, L. Berglund, M. Berggren, Q. Zhou, I. Engquista, Electrical current modulation in wood electrochemical transistor. PNAS 120, 1–7 (2023)CrossRef
24.
go back to reference X. Qi, Spectroscopic Methods in the Study of Polymer Structure (Higher Education Press, Beijing, 2004), p.42 X. Qi, Spectroscopic Methods in the Study of Polymer Structure (Higher Education Press, Beijing, 2004), p.42
25.
go back to reference D. Zhang, A.B. Karki, D. Rutman, D.P. Young, A. Wang, D. Cocke, T.H. Ho, Z. Guo, Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: fabrication and property analysis. Polymer (Guildf) 50, 4189–4198 (2009)CrossRef D. Zhang, A.B. Karki, D. Rutman, D.P. Young, A. Wang, D. Cocke, T.H. Ho, Z. Guo, Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: fabrication and property analysis. Polymer (Guildf) 50, 4189–4198 (2009)CrossRef
26.
go back to reference Y. Cai, X. Xu, Q. Wei, X. Yao, H. Qiao, L. Song, Y. Hu, F. Huang, W. Gao, Structure and morphological evolvement of electrospun polyacrylonitrile/organic-modified Fe-montmorillonite composite carbon nanofibers. Int. J. Polym. Anal. Charact.Polym. Anal. Charact. 16, 24–35 (2011)CrossRef Y. Cai, X. Xu, Q. Wei, X. Yao, H. Qiao, L. Song, Y. Hu, F. Huang, W. Gao, Structure and morphological evolvement of electrospun polyacrylonitrile/organic-modified Fe-montmorillonite composite carbon nanofibers. Int. J. Polym. Anal. Charact.Polym. Anal. Charact. 16, 24–35 (2011)CrossRef
27.
go back to reference J. Jian, X. Guo, L. Lin, Q. Cai, J. Cheng, J. Li, Gas-sensing characteristics of dielectrophoretically assembled composite film of oxygen plasma-treated SWCNTs and PEDOT/PSS polymer. Sens. Actuators, B Chem. 178, 279–288 (2013)CrossRef J. Jian, X. Guo, L. Lin, Q. Cai, J. Cheng, J. Li, Gas-sensing characteristics of dielectrophoretically assembled composite film of oxygen plasma-treated SWCNTs and PEDOT/PSS polymer. Sens. Actuators, B Chem. 178, 279–288 (2013)CrossRef
28.
go back to reference R. Mangu, S. Rajaputra, V.P. Singh, MWCNT-polymer composites as highly sensitive and selective room temperature gas sensors. Nanotechnology 22(21), 215502 (2011)CrossRefPubMed R. Mangu, S. Rajaputra, V.P. Singh, MWCNT-polymer composites as highly sensitive and selective room temperature gas sensors. Nanotechnology 22(21), 215502 (2011)CrossRefPubMed
29.
go back to reference S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)CrossRef S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)CrossRef
30.
go back to reference E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)CrossRef E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)CrossRef
31.
go back to reference D.A. Bernards, G.G. Malliaras, Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater.Funct. Mater. 17, 3538–3544 (2007)CrossRef D.A. Bernards, G.G. Malliaras, Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater.Funct. Mater. 17, 3538–3544 (2007)CrossRef
32.
go back to reference P. Lin, F. Yan, H.L.W. Chan, Ion-sensitive properties of organic electrochemical transistors. ACS Appl. Mater. Interfaces 2, 1637–1641 (2010)CrossRefPubMed P. Lin, F. Yan, H.L.W. Chan, Ion-sensitive properties of organic electrochemical transistors. ACS Appl. Mater. Interfaces 2, 1637–1641 (2010)CrossRefPubMed
33.
go back to reference Y. Fang, J. Feng, X. Shi, Y. Yang, J. Wang, X. Sun, W. Li, X. Sun, H. Peng, Coaxial fiber organic electrochemical transistor with high transconductance. NANO Res 16, 11885–11892 (2023)CrossRef Y. Fang, J. Feng, X. Shi, Y. Yang, J. Wang, X. Sun, W. Li, X. Sun, H. Peng, Coaxial fiber organic electrochemical transistor with high transconductance. NANO Res 16, 11885–11892 (2023)CrossRef
Metadata
Title
Preparation of the Composite Yarn PEDOT:PSS/rGO/PAN/DL and Its Application in Sodium-Ion Detection
Authors
Zhilei Li
Jianping Zhou
Yan Xu
Yukui Shang
Changhua Chen
Tongtong Ran
Publication date
19-03-2024
Publisher
The Korean Fiber Society
Published in
Fibers and Polymers / Issue 4/2024
Print ISSN: 1229-9197
Electronic ISSN: 1875-0052
DOI
https://doi.org/10.1007/s12221-024-00524-5

Other articles of this Issue 4/2024

Fibers and Polymers 4/2024 Go to the issue

Premium Partners