Skip to main content
Top

2024 | OriginalPaper | Chapter

5. Prevention Technology for Fretting Damage

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As shown in Fig. 5.1, the conventional fretting fatigue phenomenon is recognized as follows: “When another member is in contact with the main member via surface pressure and cyclic loads are applied to the main member, microslip occurs repeatedly at the contact edge, reddish oxide abrasion powder (cocoa) is discharged, and the fatigue strength decreases.”

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Koibuchi K, Kokubo K, Hatsuda T, Hattori T (2009) Introduction to material mechanics and fatigue design for product development. Nikkan Kogyo Shimbun (in Japanese) Koibuchi K, Kokubo K, Hatsuda T, Hattori T (2009) Introduction to material mechanics and fatigue design for product development. Nikkan Kogyo Shimbun (in Japanese)
2.
go back to reference Shiotani Y, Matsuo Y, Hattori T, Kawada H (2010) Latest fractography—fracture surface analysis of various materials and its examples. Techno Syst (in Japanese) Shiotani Y, Matsuo Y, Hattori T, Kawada H (2010) Latest fractography—fracture surface analysis of various materials and its examples. Techno Syst (in Japanese)
3.
go back to reference Nishioka K, Hirakawa K (1970) Trends in recent research on fretting fatigue. J Jpn Soc Strength Mater 5(1):1–9 (in Japanese) Nishioka K, Hirakawa K (1970) Trends in recent research on fretting fatigue. J Jpn Soc Strength Mater 5(1):1–9 (in Japanese)
4.
go back to reference Hattori T (1994) Fretting fatigue problems in structural design. In: Waterhouse RB, Lindley TC (eds) Fretting fatigue. Mechanical Engineering Publications, pp 437–451 Hattori T (1994) Fretting fatigue problems in structural design. In: Waterhouse RB, Lindley TC (eds) Fretting fatigue. Mechanical Engineering Publications, pp 437–451
5.
go back to reference Okamoto N, Nakazawa M (1979) Int J Num Methods Eng 14:377 Okamoto N, Nakazawa M (1979) Int J Num Methods Eng 14:377
6.
go back to reference Hattori T et al (1987) Fracture mechanics analysis of fretting fatigue. Trans JSME (A) 53–492:1500–1507 (in Japanese)CrossRef Hattori T et al (1987) Fracture mechanics analysis of fretting fatigue. Trans JSME (A) 53–492:1500–1507 (in Japanese)CrossRef
7.
go back to reference Hattori T, Nakamura M, Watanabe T (2000) Fretting fatigue strength improvement method by stress relief slits, 27, 28 Nov 2000, Tokyo (in Japanese) Hattori T, Nakamura M, Watanabe T (2000) Fretting fatigue strength improvement method by stress relief slits, 27, 28 Nov 2000, Tokyo (in Japanese)
8.
go back to reference Hattori T, Watanabe T (2002) Effect of adjacent contact edge on fretting fatigue strength. In: JSME annual conference proceedings, vol 2, pp 483–484 (in Japanese) Hattori T, Watanabe T (2002) Effect of adjacent contact edge on fretting fatigue strength. In: JSME annual conference proceedings, vol 2, pp 483–484 (in Japanese)
9.
go back to reference Hattori T (2018) Basics of material mechanics and strength design learned from accident cases. Nikkan Kogyo Shimbun, p 187 (in Japanese) Hattori T (2018) Basics of material mechanics and strength design learned from accident cases. Nikkan Kogyo Shimbun, p 187 (in Japanese)
10.
go back to reference Hattori T, Nakamura M, Ishizuka T (1992) Fretting fatigue analysis of strength improvement models with grooving or knurling on a contact surface. ASTM STP 1159: 101–114 Hattori T, Nakamura M, Ishizuka T (1992) Fretting fatigue analysis of strength improvement models with grooving or knurling on a contact surface. ASTM STP 1159: 101–114
11.
go back to reference Sakata H et al (1987) Role of fracture mechanics in modern Techniques, 303 Sakata H et al (1987) Role of fracture mechanics in modern Techniques, 303
12.
go back to reference Ezawa Y et al (1985) Boundary elements VII. In: Proceeding of the 7th international conference, Como, Italy, Springer-Verlag Ezawa Y et al (1985) Boundary elements VII. In: Proceeding of the 7th international conference, Como, Italy, Springer-Verlag
14.
go back to reference Sonobe et al (1980) Hitachi Rev 62–10:57 (in Japanese) Sonobe et al (1980) Hitachi Rev 62–10:57 (in Japanese)
15.
go back to reference Hattori T et al (1984) Proceedings of 1983 Tokyo international gas turbine congress, 945 Hattori T et al (1984) Proceedings of 1983 Tokyo international gas turbine congress, 945
16.
go back to reference Hattori T (1994) Fretting fatigue problems in structural design, vol 18. ESIS Publication, pp 437–460 Hattori T (1994) Fretting fatigue problems in structural design, vol 18. ESIS Publication, pp 437–460
17.
go back to reference National Transportation Safety Board (NTSB) (2018) Materials laboratory factual report No. 17–043, 14 June 2018 National Transportation Safety Board (NTSB) (2018) Materials laboratory factual report No. 17–043, 14 June 2018
18.
go back to reference Bignonnet A (1994) Some observations of the effect of shot peening on fretting fatigue. Fretting Fatigue ESIS 18:475–482 Bignonnet A (1994) Some observations of the effect of shot peening on fretting fatigue. Fretting Fatigue ESIS 18:475–482
19.
go back to reference Makino T, Sakai H (2013) Fatigue characteristics of Shinkansen axle. Nippon Steel & Sumikin Technical Report, No. 395, 56–63 (in Japanese) Makino T, Sakai H (2013) Fatigue characteristics of Shinkansen axle. Nippon Steel & Sumikin Technical Report, No. 395, 56–63 (in Japanese)
20.
go back to reference Hirakawa K, Toyama K (1994) Fretting Fatigue ESIS 18:461 Hirakawa K, Toyama K (1994) Fretting Fatigue ESIS 18:461
21.
go back to reference Japanese Industrial Standards JIS E 4502-1-2001 railway vehicle axles—quality requirements (in Japanese) Japanese Industrial Standards JIS E 4502-1-2001 railway vehicle axles—quality requirements (in Japanese)
22.
go back to reference Japanese Industrial Standards JIS E 4502-1-2001 axle for railway vehicles—dimensional requirements (in Japanese) Japanese Industrial Standards JIS E 4502-1-2001 axle for railway vehicles—dimensional requirements (in Japanese)
23.
go back to reference Japan Railway Vehicle Manufacturers Association Standard JRIS J 0401-2007 railway vehicles—induction hardened axles for high-speed vehicles (in Japanese) Japan Railway Vehicle Manufacturers Association Standard JRIS J 0401-2007 railway vehicles—induction hardened axles for high-speed vehicles (in Japanese)
24.
go back to reference Makino T, Kato T, Hirakawa K (2011) Eng Fract Mech 78(5):810 Makino T, Kato T, Hirakawa K (2011) Eng Fract Mech 78(5):810
25.
go back to reference Wheelset Research Committee for high-speed vehicles, railway axle, 1st edn. Maruzen Planet, Tokyo, 2010, p 110 (in Japanese) Wheelset Research Committee for high-speed vehicles, railway axle, 1st edn. Maruzen Planet, Tokyo, 2010, p 110 (in Japanese)
26.
go back to reference Japanese Industrial Standards JIS E 4504-1-2000 axle for railway vehicles—quality requirements (in Japanese) Japanese Industrial Standards JIS E 4504-1-2000 axle for railway vehicles—quality requirements (in Japanese)
27.
go back to reference Kawamoto M, Nishioka K (1952) Study on improvement of fatigue limit by surface rolling (1st report). Trans Jpn Soc Mech Eng 18–68:104–107 (in Japanese)CrossRef Kawamoto M, Nishioka K (1952) Study on improvement of fatigue limit by surface rolling (1st report). Trans Jpn Soc Mech Eng 18–68:104–107 (in Japanese)CrossRef
28.
go back to reference Filimonov GN (1994) Improving the fretting fatigue resistance of large shafts with the use of surface cold working. Fretting Fatigue ESIS 18:483–495 Filimonov GN (1994) Improving the fretting fatigue resistance of large shafts with the use of surface cold working. Fretting Fatigue ESIS 18:483–495
29.
go back to reference Shkolnik LM, Shakhov VI (1964) Surface rolling technology and rigs for strengthening and finishing of components. Mashinostrojenije, Moscow Shkolnik LM, Shakhov VI (1964) Surface rolling technology and rigs for strengthening and finishing of components. Mashinostrojenije, Moscow
Metadata
Title
Prevention Technology for Fretting Damage
Author
Toshio Hattori
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-46498-0_5

Premium Partners