Skip to main content
Top

2019 | OriginalPaper | Chapter

5. Printing Technologies

Authors : Leonard W. T. Ng, Guohua Hu, Richard C. T. Howe, Xiaoxi Zhu, Zongyin Yang, Christopher G. Jones, Tawfique Hasan

Published in: Printing of Graphene and Related 2D Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Printing is a mature, ubiquitous industry and is used extensively across the globe for mass producing a wide range of decorative products; from books and magazines through to packaging, advertising posters and even automobile dials. This chapter will provide an in-depth description of four of the most widely used methods: inkjet, screen, gravure and flexographic printing. In addition, 3D printing as a deposition method will also be discussed. The chapter includes an overview of the vital parameters of note for each of the different printing methods and gives a quantitative description of the different interactions within individual printing systems. Finally, generic starting formulations of 2D material inks unique to each printing method are also provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Suganuma, Printing Technology. SpringerBriefs (Springer, Berlin, 2014) K. Suganuma, Printing Technology. SpringerBriefs (Springer, Berlin, 2014)
2.
go back to reference R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997)CrossRef R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997)CrossRef
3.
go back to reference R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Contact line deposits in an evaporating drop. Phys. Rev. E 62(1), 756–765 (2000)CrossRef R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Contact line deposits in an evaporating drop. Phys. Rev. E 62(1), 756–765 (2000)CrossRef
4.
go back to reference J.A. Lim, W.H. Lee, H.S. Lee, J.H. Lee, Y.D. Park, K. Cho, Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater. 18(2), 229–234 (2008)CrossRef J.A. Lim, W.H. Lee, H.S. Lee, J.H. Lee, Y.D. Park, K. Cho, Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater. 18(2), 229–234 (2008)CrossRef
5.
go back to reference H. Hu, R.G. Larson, Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110(14), 7090–7094 (2006)CrossRef H. Hu, R.G. Larson, Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110(14), 7090–7094 (2006)CrossRef
6.
go back to reference H. Hu, R.G. Larson, Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21(9), 3972–3980 (2005)CrossRef H. Hu, R.G. Larson, Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21(9), 3972–3980 (2005)CrossRef
7.
go back to reference H. Wang, Z. Wang, L. Huang, A. Mitra, Y. Yan, Surface patterned porous films by convection-assisted dynamic self-assembly of zeolite nanoparticles. Langmuir 17(9), 2572–2574 (2001)CrossRef H. Wang, Z. Wang, L. Huang, A. Mitra, Y. Yan, Surface patterned porous films by convection-assisted dynamic self-assembly of zeolite nanoparticles. Langmuir 17(9), 2572–2574 (2001)CrossRef
8.
go back to reference H. Liu, W. Xu, W. Tan, X. Zhu, J. Wang, J. Peng, Y. Cao, Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. J. Colloid Interface Sci. 465, 106–111 (2016)CrossRef H. Liu, W. Xu, W. Tan, X. Zhu, J. Wang, J. Peng, Y. Cao, Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. J. Colloid Interface Sci. 465, 106–111 (2016)CrossRef
9.
go back to reference M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010)CrossRef M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010)CrossRef
10.
go back to reference G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R.C.T. Howe, K. Shehzad, Z. Yang, X. Zhu, R.I. Woodward, T.-C. Wu, H. Jussila, J.-B. Wu, P. Peng, P.-H. Tan, Z. Sun, E.J.R. Kelleher, M. Zhang, Y. Xu, T. Hasan, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8(1), 278 (2017) G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R.C.T. Howe, K. Shehzad, Z. Yang, X. Zhu, R.I. Woodward, T.-C. Wu, H. Jussila, J.-B. Wu, P. Peng, P.-H. Tan, Z. Sun, E.J.R. Kelleher, M. Zhang, Y. Xu, T. Hasan, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8(1), 278 (2017)
11.
go back to reference G.L. Robertson, Food Packaging: Principles and Practice, 3rd edn. (CRC Press, Boca Raton, 2012) G.L. Robertson, Food Packaging: Principles and Practice, 3rd edn. (CRC Press, Boca Raton, 2012)
12.
go back to reference J.D. Berry, M.J. Neeson, R.R. Dagastine, D.Y.C. Chan, R.F. Tabor, Measurement of surface and interfacial tension using pendant drop tensiometry. J. Colloid Interface Sci. 454, 226–237 (2015)CrossRef J.D. Berry, M.J. Neeson, R.R. Dagastine, D.Y.C. Chan, R.F. Tabor, Measurement of surface and interfacial tension using pendant drop tensiometry. J. Colloid Interface Sci. 454, 226–237 (2015)CrossRef
13.
go back to reference C. Huh, R.L. Reed, A method for estimating interfacial tensions and contact angles from sessile and pendant drop shapes. J. Colloid Interface Sci. 91(2), 472–484 (1983)CrossRef C. Huh, R.L. Reed, A method for estimating interfacial tensions and contact angles from sessile and pendant drop shapes. J. Colloid Interface Sci. 91(2), 472–484 (1983)CrossRef
14.
go back to reference C.E. Stauffer, The measurement of surface tension by the pendant drop technique. J. Phys. Chem. 69(6), 1933–1938 (1965)CrossRef C.E. Stauffer, The measurement of surface tension by the pendant drop technique. J. Phys. Chem. 69(6), 1933–1938 (1965)CrossRef
16.
go back to reference K. Kabza, J.E. Gestwicki, J.L. McGrath, Contact angle goniometry as a tool for surface tension measurements of solids, using Zisman plot method. A physical chemistry experiment. J. Chem. Educ. 77(1), 63–65 (2000)CrossRef K. Kabza, J.E. Gestwicki, J.L. McGrath, Contact angle goniometry as a tool for surface tension measurements of solids, using Zisman plot method. A physical chemistry experiment. J. Chem. Educ. 77(1), 63–65 (2000)CrossRef
17.
go back to reference W.A. Zisman, Relation of the equilibrium contact angle to liquid and solid constitution, in Contact Angle, Wettability, and Adhesion, vol. 43 (American Chemical Society, 1964), pp. 1–51 W.A. Zisman, Relation of the equilibrium contact angle to liquid and solid constitution, in Contact Angle, Wettability, and Adhesion, vol. 43 (American Chemical Society, 1964), pp. 1–51
18.
go back to reference S. Magdassi, The Chemistry of Inkjet Inks (World Scientific, Singapore, 2009)CrossRef S. Magdassi, The Chemistry of Inkjet Inks (World Scientific, Singapore, 2009)CrossRef
19.
go back to reference I.M. Hutchings, G.D. Martin (eds.), Inkjet Technology for Digital Fabrication (Wiley, Hoboken, 2012) I.M. Hutchings, G.D. Martin (eds.), Inkjet Technology for Digital Fabrication (Wiley, Hoboken, 2012)
20.
go back to reference J.G. Korvink, P.J. Smith, D.-Y. Shin (eds.), Inkjet-Based Micromanufacturing (Wiley-VCH, Weinheim, 2012) J.G. Korvink, P.J. Smith, D.-Y. Shin (eds.), Inkjet-Based Micromanufacturing (Wiley-VCH, Weinheim, 2012)
21.
go back to reference P. Calvert, Inkjet printing for materials and devices. Chem. Mater. 13(10), 3299–3305 (2001)CrossRef P. Calvert, Inkjet printing for materials and devices. Chem. Mater. 13(10), 3299–3305 (2001)CrossRef
22.
go back to reference F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRef F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRef
23.
go back to reference E. Tekin, P.J. Smith, U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4(4), 703 (2008)CrossRef E. Tekin, P.J. Smith, U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4(4), 703 (2008)CrossRef
24.
go back to reference B.-J. de Gans, P.C. Duineveld, U.S. Schubert, Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16(3), 203–213 (2004)CrossRef B.-J. de Gans, P.C. Duineveld, U.S. Schubert, Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16(3), 203–213 (2004)CrossRef
25.
go back to reference R.H. Leach, R.J. Pierce, The Printing Ink Manual (Springer, Amsterdam, 1993) R.H. Leach, R.J. Pierce, The Printing Ink Manual (Springer, Amsterdam, 1993)
26.
go back to reference B. Derby, Inkjet printing of functional and structural materials: fluid property requirements feature stability, and resolution. Annu. Rev. Mater. Res. 40(1), 395–414 (2010)CrossRef B. Derby, Inkjet printing of functional and structural materials: fluid property requirements feature stability, and resolution. Annu. Rev. Mater. Res. 40(1), 395–414 (2010)CrossRef
27.
go back to reference G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe, C. Jones, M.C. Hersam, T. Hasan, Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47, 3265–3300 (2018)CrossRef G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe, C. Jones, M.C. Hersam, T. Hasan, Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47, 3265–3300 (2018)CrossRef
28.
go back to reference T. Juntunen, H. Jussila, M. Ruoho, S. Liu, G. Hu, T. Albrow-Owen, L.W.T. Ng, R.C.T. Howe, T. Hasan, Z. Sun, I. Tittonen. Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv. Funct. Mat. 28(22), 1800480 (2018)CrossRef T. Juntunen, H. Jussila, M. Ruoho, S. Liu, G. Hu, T. Albrow-Owen, L.W.T. Ng, R.C.T. Howe, T. Hasan, Z. Sun, I. Tittonen. Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv. Funct. Mat. 28(22), 1800480 (2018)CrossRef
29.
go back to reference D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2(5), 925–932 (2014)CrossRef D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2(5), 925–932 (2014)CrossRef
30.
go back to reference F. Withers, H. Yang, L. Britnell, A.P. Rooney, E. Lewis, A. Felten, C.R. Woods, V. Sanchez Romaguera, T. Georgiou, A. Eckmann, Y.J. Kim, S.G. Yeates, S.J. Haigh, A.K. Geim, K.S. Novoselov, C. Casiraghi, Heterostructures produced from nanosheet-based inks. Nano Lett. 14(7), 3987–3992 (2014)CrossRef F. Withers, H. Yang, L. Britnell, A.P. Rooney, E. Lewis, A. Felten, C.R. Woods, V. Sanchez Romaguera, T. Georgiou, A. Eckmann, Y.J. Kim, S.G. Yeates, S.J. Haigh, A.K. Geim, K.S. Novoselov, C. Casiraghi, Heterostructures produced from nanosheet-based inks. Nano Lett. 14(7), 3987–3992 (2014)CrossRef
31.
go back to reference A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily, I. Godwin, J. Coelho, V. Nicolosi, J. Lauth, A. Kulkarni, S. Kinge, L.D.A. Siebbeles, G.S. Duesberg, J.N. Coleman, All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356(6333), 69–73 (2017)CrossRef A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily, I. Godwin, J. Coelho, V. Nicolosi, J. Lauth, A. Kulkarni, S. Kinge, L.D.A. Siebbeles, G.S. Duesberg, J.N. Coleman, All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356(6333), 69–73 (2017)CrossRef
32.
go back to reference D. McManus, S. Vranic, F. Withers, V. Sanchez-Romaguera, M. Macucci, H. Yang, R. Sorrentino, K. Parvez, S.-K. Son, G. Iannaccone, K. Kostarelos, G. Fiori, C. Casiraghi, Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12(4), 343–350 (2017)CrossRef D. McManus, S. Vranic, F. Withers, V. Sanchez-Romaguera, M. Macucci, H. Yang, R. Sorrentino, K. Parvez, S.-K. Son, G. Iannaccone, K. Kostarelos, G. Fiori, C. Casiraghi, Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12(4), 343–350 (2017)CrossRef
33.
go back to reference V. Bianchi, T. Carey, L. Viti, L. Li, E.H. Linfield, A.G. Davies, A. Tredicucci, D. Yoon, P.G. Karagiannidis, L. Lombardi, F. Tomarchio, A.C. Ferrari, F. Torrisi, M.S. Vitiello, Terahertz saturable absorbers from liquid phase exfoliation of graphite. Nat. Commun. 8, 15763 (2017)CrossRef V. Bianchi, T. Carey, L. Viti, L. Li, E.H. Linfield, A.G. Davies, A. Tredicucci, D. Yoon, P.G. Karagiannidis, L. Lombardi, F. Tomarchio, A.C. Ferrari, F. Torrisi, M.S. Vitiello, Terahertz saturable absorbers from liquid phase exfoliation of graphite. Nat. Commun. 8, 15763 (2017)CrossRef
34.
go back to reference F. Bonaccorso, A. Bartolotta, J.N. Coleman, C. Backes, 2D-crystal-based functional inks. Adv. Mater. 28(29), 6136–6166 (2016)CrossRef F. Bonaccorso, A. Bartolotta, J.N. Coleman, C. Backes, 2D-crystal-based functional inks. Adv. Mater. 28(29), 6136–6166 (2016)CrossRef
35.
go back to reference R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015) R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015)
36.
go back to reference D. Dodoo-Arhin, R.C.T. Howe, G. Hu, Y. Zhang, P. Hiralal, A. Bello, G. Amaratunga, T. Hasan, Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon 105, 33–41 (2016)CrossRef D. Dodoo-Arhin, R.C.T. Howe, G. Hu, Y. Zhang, P. Hiralal, A. Bello, G. Amaratunga, T. Hasan, Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon 105, 33–41 (2016)CrossRef
37.
go back to reference S. Santra, G. Hu, R.C.T. Howe, A. De Luca, S.Z. Ali, F. Udrea, J.W. Gardner, S.K. Ray, P.K. Guha, T. Hasan, CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5(1), 17374 (2015) S. Santra, G. Hu, R.C.T. Howe, A. De Luca, S.Z. Ali, F. Udrea, J.W. Gardner, S.K. Ray, P.K. Guha, T. Hasan, CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5(1), 17374 (2015)
38.
go back to reference H. Kipphan (ed.), Handbook of Print Media (Springer, Berlin, 2001) H. Kipphan (ed.), Handbook of Print Media (Springer, Berlin, 2001)
39.
go back to reference G.D. Martin, S.D. Hoath, I.M. Hutchings, Inkjet printing - the physics of manipulating liquid jets and drops. J. Phys. Conf. Ser. 105, 012001 (2008) G.D. Martin, S.D. Hoath, I.M. Hutchings, Inkjet printing - the physics of manipulating liquid jets and drops. J. Phys. Conf. Ser. 105, 012001 (2008)
40.
go back to reference D. Jang, D. Kim, J. Moon, Influence of fluid physical properties on ink-jet printability. Langmuir 25(5), 2629–2635 (2009)CrossRef D. Jang, D. Kim, J. Moon, Influence of fluid physical properties on ink-jet printability. Langmuir 25(5), 2629–2635 (2009)CrossRef
41.
go back to reference J.E. Fromm, Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 28(3), 322–333 (1984)CrossRef J.E. Fromm, Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 28(3), 322–333 (1984)CrossRef
42.
go back to reference Y. Aleeva, B. Pignataro, Recent advances in upscalable wet methods and ink formulations for printed electronics. J. Mater. Chem. C 2(32), 6436 (2014)CrossRef Y. Aleeva, B. Pignataro, Recent advances in upscalable wet methods and ink formulations for printed electronics. J. Mater. Chem. C 2(32), 6436 (2014)CrossRef
43.
go back to reference D. Soltman, V. Subramanian, Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24(5), 2224–2231 (2008)CrossRef D. Soltman, V. Subramanian, Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24(5), 2224–2231 (2008)CrossRef
44.
go back to reference E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRef E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRef
45.
go back to reference A. Capasso, A.E. Del Rio Castillo, H. Sun, A. Ansaldo, V. Pellegrini, F. Bonaccorso, Ink-jet printing of graphene for flexible electronics: an environmentally-friendly approach. Solid State Commun. 224, 53–63 (2015)CrossRef A. Capasso, A.E. Del Rio Castillo, H. Sun, A. Ansaldo, V. Pellegrini, F. Bonaccorso, Ink-jet printing of graphene for flexible electronics: an environmentally-friendly approach. Solid State Commun. 224, 53–63 (2015)CrossRef
46.
go back to reference Y. Xu, I. Hennig, D. Freyberg, A. James Strudwick, M. Georg Schwab, T. Weitz, K. Chih-Pei Cha, Inkjet-printed energy storage device using graphene/polyaniline inks. J. Power Sources 248, 483–488 (2014)CrossRef Y. Xu, I. Hennig, D. Freyberg, A. James Strudwick, M. Georg Schwab, T. Weitz, K. Chih-Pei Cha, Inkjet-printed energy storage device using graphene/polyaniline inks. J. Power Sources 248, 483–488 (2014)CrossRef
47.
go back to reference J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, M. Östling, Efficient inkjet printing of graphene. Adv. Mater. 25(29), 3985–3992 (2013)CrossRef J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, M. Östling, Efficient inkjet printing of graphene. Adv. Mater. 25(29), 3985–3992 (2013)CrossRef
48.
go back to reference A.G. Kelly, D. Finn, A. Harvey, T. Hallam, J.N. Coleman, All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. Appl. Phys. Lett. 109(2), 023107 (2016)CrossRef A.G. Kelly, D. Finn, A. Harvey, T. Hallam, J.N. Coleman, All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. Appl. Phys. Lett. 109(2), 023107 (2016)CrossRef
49.
go back to reference K. Arapov, R. Abbel, G. de With, H. Friedrich, Inkjet printing of graphene. Faraday Discuss. 173, 323–336 (2014)CrossRef K. Arapov, R. Abbel, G. de With, H. Friedrich, Inkjet printing of graphene. Faraday Discuss. 173, 323–336 (2014)CrossRef
50.
go back to reference J. Li, M.M. Naiini, S. Vaziri, M.C. Lemme, M. Östling, Inkjet printing of MoS2. Adv. Funct. Mater. 24(41), 6524–6531 (2014)CrossRef J. Li, M.M. Naiini, S. Vaziri, M.C. Lemme, M. Östling, Inkjet printing of MoS2. Adv. Funct. Mater. 24(41), 6524–6531 (2014)CrossRef
51.
go back to reference E.B. Secor, B.Y. Ahn, T.Z. Gao, J.A. Lewis, M.C. Hersam, Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv. Mater. 27(42), 6683–6688 (2015)CrossRef E.B. Secor, B.Y. Ahn, T.Z. Gao, J.A. Lewis, M.C. Hersam, Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv. Mater. 27(42), 6683–6688 (2015)CrossRef
52.
go back to reference E.B. Secor, T.Z. Gao, A.E. Islam, R. Rao, S.G. Wallace, J. Zhu, K.W. Putz, B. Maruyama, M.C. Hersam, Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose. Chem. Mater. 29, 2332–2340 (2017)CrossRef E.B. Secor, T.Z. Gao, A.E. Islam, R. Rao, S.G. Wallace, J. Zhu, K.W. Putz, B. Maruyama, M.C. Hersam, Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose. Chem. Mater. 29, 2332–2340 (2017)CrossRef
53.
go back to reference S. Scherp, S.J.D. Ericsson, US4267773 - Silkscreen Printing Machine (1981) S. Scherp, S.J.D. Ericsson, US4267773 - Silkscreen Printing Machine (1981)
54.
go back to reference S.J.D. Ericsson, US4226181 - Method and apparatus for adjusting the position of a stencil relative to a printing table (1980) S.J.D. Ericsson, US4226181 - Method and apparatus for adjusting the position of a stencil relative to a printing table (1980)
55.
go back to reference B. Kang, W.H. Lee, K. Cho, Recent advances in organic transistor printing processes. ACS Appl. Mater. Interfaces 5(7), 2302–2315 (2013)CrossRef B. Kang, W.H. Lee, K. Cho, Recent advances in organic transistor printing processes. ACS Appl. Mater. Interfaces 5(7), 2302–2315 (2013)CrossRef
56.
go back to reference H. Lievens, Wide web coating of complex materials. Surf. Coat. Technol. 76–77, 744–753 (1995)CrossRef H. Lievens, Wide web coating of complex materials. Surf. Coat. Technol. 76–77, 744–753 (1995)CrossRef
57.
go back to reference S.J.D. Ericsson, US4485447 - Method and arrangement for registration of a print on a material (1977) S.J.D. Ericsson, US4485447 - Method and arrangement for registration of a print on a material (1977)
58.
go back to reference W.J. Hyun, E.B. Secor, G.A. Rojas, M.C. Hersam, L.F. Francis, C.D. Frisbie, All-printed, foldable organic thin-film transistors on glassine paper. Adv. Mater. 27(44), 7058–7064 (2015)CrossRef W.J. Hyun, E.B. Secor, G.A. Rojas, M.C. Hersam, L.F. Francis, C.D. Frisbie, All-printed, foldable organic thin-film transistors on glassine paper. Adv. Mater. 27(44), 7058–7064 (2015)CrossRef
59.
go back to reference C. Karuwan, A. Wisitsoraat, P. Chaisuwan, D. Nacapricha, A. Tuantranont, W.C. Hooper, V. Vaccarino, R.W. Alexander, D.G. Harrison, A.A. Quyyumi, Screen-printed graphene-based electrochemical sensors for a microfluidic device. Anal. Methods 9(24), 3689–3695 (2017)CrossRef C. Karuwan, A. Wisitsoraat, P. Chaisuwan, D. Nacapricha, A. Tuantranont, W.C. Hooper, V. Vaccarino, R.W. Alexander, D.G. Harrison, A.A. Quyyumi, Screen-printed graphene-based electrochemical sensors for a microfluidic device. Anal. Methods 9(24), 3689–3695 (2017)CrossRef
60.
go back to reference R.F. Rosu, R.A. Shanks, S.N. Bhattacharya, Shear rheology and thermal properties of linear and branched poly (ethylene terephthalate) blends. Polymer 40, 5891–5898 (1999)CrossRef R.F. Rosu, R.A. Shanks, S.N. Bhattacharya, Shear rheology and thermal properties of linear and branched poly (ethylene terephthalate) blends. Polymer 40, 5891–5898 (1999)CrossRef
61.
go back to reference M.J. Barker, Screen inks, in The Printing Ink Manual, Chap. 10, ed. by R. Leach (Society of British Printing Ink Manufacturers, Edinburgh, 1999), pp. 599–635 M.J. Barker, Screen inks, in The Printing Ink Manual, Chap. 10, ed. by R. Leach (Society of British Printing Ink Manufacturers, Edinburgh, 1999), pp. 599–635
62.
go back to reference L. Dybowska-Sarapuk, D. Janczak, G. Wróblewski, M. Słoma, M. Jakubowska, The influence of graphene screen printing paste’s composition on its viscosity. Proc. SPIE 9662, 966242 (2015) L. Dybowska-Sarapuk, D. Janczak, G. Wróblewski, M. Słoma, M. Jakubowska, The influence of graphene screen printing paste’s composition on its viscosity. Proc. SPIE 9662, 966242 (2015)
63.
go back to reference J.A. Owczarek, F.L. Howland, A study of the off-contact screen printing process—part I: model of the printing process and some results derived from experiments. IEEE Trans. Compon. Hybrids Manuf. Technol. 13(2), 358–367 (1990)CrossRef J.A. Owczarek, F.L. Howland, A study of the off-contact screen printing process—part I: model of the printing process and some results derived from experiments. IEEE Trans. Compon. Hybrids Manuf. Technol. 13(2), 358–367 (1990)CrossRef
64.
go back to reference D. He, Modelling and computer simulation of the behaviour of solder paste in stencil printing for surface mount assembly. PhD thesis, University of Salford, 1998 D. He, Modelling and computer simulation of the behaviour of solder paste in stencil printing for surface mount assembly. PhD thesis, University of Salford, 1998
65.
go back to reference N. Kapur, S.J. Abbott, E.D. Dolden, P.H. Gaskell, Predicting the behavior of screen printing. IEEE Trans. Compon. Packag. Manuf. Technol. 3(3), 508–515 (2013)CrossRef N. Kapur, S.J. Abbott, E.D. Dolden, P.H. Gaskell, Predicting the behavior of screen printing. IEEE Trans. Compon. Packag. Manuf. Technol. 3(3), 508–515 (2013)CrossRef
66.
go back to reference A. Goldschmidt, H.-J. Streitburger, BASF Handbook on Basics of Coating Technology (William Andrew, Norwich, 2003) A. Goldschmidt, H.-J. Streitburger, BASF Handbook on Basics of Coating Technology (William Andrew, Norwich, 2003)
67.
go back to reference E.W. Flick, Printing inks, in Printing Ink and Overprint Varnish Formulations, 2nd edn. (Elsevier, New York, 1999), pp. 1–61 E.W. Flick, Printing inks, in Printing Ink and Overprint Varnish Formulations, 2nd edn. (Elsevier, New York, 1999), pp. 1–61
68.
go back to reference D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huang, Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49(15), 5382–5388 (2011)CrossRef D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huang, Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49(15), 5382–5388 (2011)CrossRef
69.
go back to reference K. Arapov, E. Rubingh, R. Abbel, J. Laven, G. de With, H. Friedrich, Conductive screen printing inks by gelation of graphene dispersions. Adv. Funct. Mater. 26(4), 586–593 (2016)CrossRef K. Arapov, E. Rubingh, R. Abbel, J. Laven, G. de With, H. Friedrich, Conductive screen printing inks by gelation of graphene dispersions. Adv. Funct. Mater. 26(4), 586–593 (2016)CrossRef
70.
go back to reference Y. Xu, M.G. Schwab, A.J. Strudwick, I. Hennig, X. Feng, Z. Wu, K. Müllen, Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks. Adv. Energy Mater. 3(8), 1035–1040 (2013)CrossRef Y. Xu, M.G. Schwab, A.J. Strudwick, I. Hennig, X. Feng, Z. Wu, K. Müllen, Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks. Adv. Energy Mater. 3(8), 1035–1040 (2013)CrossRef
71.
go back to reference S.J. Rowley-Neale, G.C. Smith, C.E. Banks, Mass-producible 2D-MoS2 -impregnated screen-printed electrodes that demonstrate efficient electrocatalysis toward the oxygen reduction reaction. ACS Appl. Mater. Interfaces 9(27), 22539–22548 (2017)CrossRef S.J. Rowley-Neale, G.C. Smith, C.E. Banks, Mass-producible 2D-MoS2 -impregnated screen-printed electrodes that demonstrate efficient electrocatalysis toward the oxygen reduction reaction. ACS Appl. Mater. Interfaces 9(27), 22539–22548 (2017)CrossRef
72.
go back to reference Z. Zhang, P. Pan, X. Liu, Z. Yang, J. Wei, Z. Wei, 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing. Mater. Chem. Phys. 187, 28–38 (2017)CrossRef Z. Zhang, P. Pan, X. Liu, Z. Yang, J. Wei, Z. Wei, 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing. Mater. Chem. Phys. 187, 28–38 (2017)CrossRef
73.
go back to reference A.M. Abdelkader, N. Karim, C. Vallés, S. Afroj, K.S. Novoselov, S.G.Yeates, Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Mater. 4(3), 35016 (2017)CrossRef A.M. Abdelkader, N. Karim, C. Vallés, S. Afroj, K.S. Novoselov, S.G.Yeates, Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Mater. 4(3), 35016 (2017)CrossRef
74.
go back to reference A.M. Joseph, B. Nagendra, E. Bhoje Gowd, K.P. Surendran, Screen-printable electronic ink of ultrathin boron nitride nanosheets. ACS Omega 1(6), 1220–1228 (2016)CrossRef A.M. Joseph, B. Nagendra, E. Bhoje Gowd, K.P. Surendran, Screen-printable electronic ink of ultrathin boron nitride nanosheets. ACS Omega 1(6), 1220–1228 (2016)CrossRef
75.
go back to reference K.I. Bardin, US4003311 - Gravure printing method (1977) K.I. Bardin, US4003311 - Gravure printing method (1977)
76.
go back to reference M. Lahti, S. Leppävuori, V. Lantto, Gravure-offset-printing technique for the fabrication of solid films. Appl. Surf. Sci. 142(1), 367–370 (1999)CrossRef M. Lahti, S. Leppävuori, V. Lantto, Gravure-offset-printing technique for the fabrication of solid films. Appl. Surf. Sci. 142(1), 367–370 (1999)CrossRef
77.
go back to reference C. Deus, J. Salomon, U. Wehner, Roll-to-roll coating of flexible glass: equipment, layer stacks and applications. Vak. Forsch. Prax. 28(4), 40–44 (2016)CrossRef C. Deus, J. Salomon, U. Wehner, Roll-to-roll coating of flexible glass: equipment, layer stacks and applications. Vak. Forsch. Prax. 28(4), 40–44 (2016)CrossRef
78.
go back to reference E.B. Secor, S. Lim, H. Zhang, C.D. Frisbie, L.F. Francis, M.C. Hersam, Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26(26), 4533–4538 (2014)CrossRef E.B. Secor, S. Lim, H. Zhang, C.D. Frisbie, L.F. Francis, M.C. Hersam, Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26(26), 4533–4538 (2014)CrossRef
79.
go back to reference H.A.D. Nguyen, C. Lee, K.-H. Shin, D. Lee, An investigation of the ink-transfer mechanism during the printing phase of high-resolution roll-to-roll gravure printing. IEEE Trans. Compon. Packag. Manuf. Technol. 5(10), 1516–1524 (2015)CrossRef H.A.D. Nguyen, C. Lee, K.-H. Shin, D. Lee, An investigation of the ink-transfer mechanism during the printing phase of high-resolution roll-to-roll gravure printing. IEEE Trans. Compon. Packag. Manuf. Technol. 5(10), 1516–1524 (2015)CrossRef
80.
go back to reference H.A.D. Nguyen, J. Lee, C.H. Kim, K.-H. Shin, D. Lee, An approach for controlling printed line-width in high resolution roll-to-roll gravure printing. J. Micromech. Microeng. 23(9), 095010 (2013)CrossRef H.A.D. Nguyen, J. Lee, C.H. Kim, K.-H. Shin, D. Lee, An approach for controlling printed line-width in high resolution roll-to-roll gravure printing. J. Micromech. Microeng. 23(9), 095010 (2013)CrossRef
81.
82.
go back to reference A.W. Neumann, R.J. Good, C.J. Hope, M. Sejpal, An equation-of-state approach to determine surface tensions of low-energy solids from contact angles. J. Colloid Interface Sci. 49(2), 291–304 (1974)CrossRef A.W. Neumann, R.J. Good, C.J. Hope, M. Sejpal, An equation-of-state approach to determine surface tensions of low-energy solids from contact angles. J. Colloid Interface Sci. 49(2), 291–304 (1974)CrossRef
83.
go back to reference J.A. Martens, US5172072 - Flexographic printing plate process (1992) J.A. Martens, US5172072 - Flexographic printing plate process (1992)
84.
go back to reference R.N. Fan, US5719009 - Laser ablatable photosensitive elements utilized to make flexographic printing plates (1990) R.N. Fan, US5719009 - Laser ablatable photosensitive elements utilized to make flexographic printing plates (1990)
85.
87.
go back to reference J. Baker, D. Deganello, D.T. Gethin, T.M. Watson, Flexographic printing of graphene nanoplatelet ink to replace platinum as counter electrode catalyst in flexible dye sensitised solar cell. Mater. Res. Innov. 18(2), 86–90 (2014)CrossRef J. Baker, D. Deganello, D.T. Gethin, T.M. Watson, Flexographic printing of graphene nanoplatelet ink to replace platinum as counter electrode catalyst in flexible dye sensitised solar cell. Mater. Res. Innov. 18(2), 86–90 (2014)CrossRef
88.
go back to reference Y. Xiao, L. Huang, Q. Zhang, S. Xu, Q. Chen, W. Shi, Gravure printing of hybrid MoS2-rGO interdigitated electrodes for flexible microsupercapacitors. Appl. Phys. Lett. 107(1), 013906 (2015)CrossRef Y. Xiao, L. Huang, Q. Zhang, S. Xu, Q. Chen, W. Shi, Gravure printing of hybrid MoS2-rGO interdigitated electrodes for flexible microsupercapacitors. Appl. Phys. Lett. 107(1), 013906 (2015)CrossRef
90.
go back to reference D. Bitounis, H. Ali-Boucetta, B.H. Hong, D.-H. Min, K. Kostarelos, Prospects and challenges of graphene in biomedical applications. Adv. Mater. 25(16), 2258–2268 (2013)CrossRef D. Bitounis, H. Ali-Boucetta, B.H. Hong, D.-H. Min, K. Kostarelos, Prospects and challenges of graphene in biomedical applications. Adv. Mater. 25(16), 2258–2268 (2013)CrossRef
91.
go back to reference A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, R.N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9(4), 4636–4648 (2015)CrossRef A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, R.N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9(4), 4636–4648 (2015)CrossRef
92.
go back to reference G.Y. Chen, D.W.P. Pang, S.M. Hwang, H.Y. Tuan, Y.C. Hu, A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2), 418–427 (2012)CrossRef G.Y. Chen, D.W.P. Pang, S.M. Hwang, H.Y. Tuan, Y.C. Hu, A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2), 418–427 (2012)CrossRef
93.
go back to reference Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lina, Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10), 1027–1036 (2010)CrossRef Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lina, Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10), 1027–1036 (2010)CrossRef
94.
go back to reference E.K. Wujcik, C.N. Monty, Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5(3), 233–249 (2013)CrossRef E.K. Wujcik, C.N. Monty, Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5(3), 233–249 (2013)CrossRef
95.
go back to reference A. Fraczek-Szczypta, Carbon nanomaterials for nerve tissue stimulation and regeneration. Mater. Sci. Eng. C 34(1), 35–49 (2014)CrossRef A. Fraczek-Szczypta, Carbon nanomaterials for nerve tissue stimulation and regeneration. Mater. Sci. Eng. C 34(1), 35–49 (2014)CrossRef
96.
go back to reference C. Schubert, M.C. van Langeveld, L.A. Donoso, Innovations in 3D printing: a 3D overview from optics to organs. Br. J. Ophthalmol. 98(2), 159–61 (2014)CrossRef C. Schubert, M.C. van Langeveld, L.A. Donoso, Innovations in 3D printing: a 3D overview from optics to organs. Br. J. Ophthalmol. 98(2), 159–61 (2014)CrossRef
97.
go back to reference D. Zhang, B. Chi, B. Li, Z. Gao, Y. Du, J. Guo, J. Wei, Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth. Met. 217, 79–86 (2016)CrossRef D. Zhang, B. Chi, B. Li, Z. Gao, Y. Du, J. Guo, J. Wei, Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth. Met. 217, 79–86 (2016)CrossRef
98.
go back to reference K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, L. Hu, Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 28(13), 2587–2594 (2016)CrossRef K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, L. Hu, Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 28(13), 2587–2594 (2016)CrossRef
99.
go back to reference X. Yan, P. Gu, A review of rapid prototyping technologies and systems. Comput. Aided Des. 28(4), 307–318 (1996)CrossRef X. Yan, P. Gu, A review of rapid prototyping technologies and systems. Comput. Aided Des. 28(4), 307–318 (1996)CrossRef
100.
go back to reference P.M. Pandey, N.V. Reddy, S.G. Dhande, Real time adaptive slicing for fused deposition modelling. Int. J. Mach. Tools Manuf. 43(1), 61–71 (2003)CrossRef P.M. Pandey, N.V. Reddy, S.G. Dhande, Real time adaptive slicing for fused deposition modelling. Int. J. Mach. Tools Manuf. 43(1), 61–71 (2003)CrossRef
101.
go back to reference R. Anitha, S. Arunachalam, P. Radhakrishnan, Critical parameters influencing the quality of prototypes in fused deposition modelling. J. Mater. Process. Technol. 118(1–3), 385–388 (2001)CrossRef R. Anitha, S. Arunachalam, P. Radhakrishnan, Critical parameters influencing the quality of prototypes in fused deposition modelling. J. Mater. Process. Technol. 118(1–3), 385–388 (2001)CrossRef
102.
go back to reference A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Improving dimensional accuracy of Fused Deposition Modelling processed part using grey Taguchi method. Mater. Des. 30(10), 4243–4252 (2009)CrossRef A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Improving dimensional accuracy of Fused Deposition Modelling processed part using grey Taguchi method. Mater. Des. 30(10), 4243–4252 (2009)CrossRef
103.
go back to reference D.T. Pham, R.S. Gault, A comparison of rapid prototyping technologies. Int. J. Mach. Tools Manuf. 38(10–11), 1257–1287 (1998)CrossRef D.T. Pham, R.S. Gault, A comparison of rapid prototyping technologies. Int. J. Mach. Tools Manuf. 38(10–11), 1257–1287 (1998)CrossRef
104.
go back to reference S.H. Masood, W.Q. Song, Development of new metal/polymer materials for rapid tooling using Fused deposition modelling. Mater. Des. 25(7), 587–594 (2004)CrossRef S.H. Masood, W.Q. Song, Development of new metal/polymer materials for rapid tooling using Fused deposition modelling. Mater. Des. 25(7), 587–594 (2004)CrossRef
105.
go back to reference J.-P. Kruth, M.C. Leu, T. Nakagawa, Progress in additive manufacturing and rapid prototyping. CIRP Ann. Manuf. Technol. 47(2), 525–540 (1998)CrossRef J.-P. Kruth, M.C. Leu, T. Nakagawa, Progress in additive manufacturing and rapid prototyping. CIRP Ann. Manuf. Technol. 47(2), 525–540 (1998)CrossRef
106.
go back to reference A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 31(1), 287–295 (2010)CrossRef A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 31(1), 287–295 (2010)CrossRef
107.
go back to reference J.H. Kim, W.S. Chang, D. Kim, J.R. Yang, J.T. Han, G.-W. Lee, J.T. Kim, S.K. Seol, 3D printing of reduced graphene oxide nanowires. Adv. Mater. 27(1), 157–161 (2015)CrossRef J.H. Kim, W.S. Chang, D. Kim, J.R. Yang, J.T. Han, G.-W. Lee, J.T. Kim, S.K. Seol, 3D printing of reduced graphene oxide nanowires. Adv. Mater. 27(1), 157–161 (2015)CrossRef
108.
go back to reference E. García-Tuñon, S. Barg, J. Franco, R. Bell, S. Eslava, E. D’Elia, R.C. Maher, F. Guitian, E. Saiz, Printing in three dimensions with graphene. Adv. Mater. 27(10), 1688–1693 (2015)CrossRef E. García-Tuñon, S. Barg, J. Franco, R. Bell, S. Eslava, E. D’Elia, R.C. Maher, F. Guitian, E. Saiz, Printing in three dimensions with graphene. Adv. Mater. 27(10), 1688–1693 (2015)CrossRef
109.
go back to reference Q. Zhang, F. Zhang, S.P. Medarametla, C. Zhou, H. Li, D. Lin, 3D printing of graphene aerogels. Small 12(13), 1702–1708 (2016)CrossRef Q. Zhang, F. Zhang, S.P. Medarametla, C. Zhou, H. Li, D. Lin, 3D printing of graphene aerogels. Small 12(13), 1702–1708 (2016)CrossRef
Metadata
Title
Printing Technologies
Authors
Leonard W. T. Ng
Guohua Hu
Richard C. T. Howe
Xiaoxi Zhu
Zongyin Yang
Christopher G. Jones
Tawfique Hasan
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-91572-2_5