Skip to main content
Top
Published in: Journal of Materials Science 27/2021

04-07-2021 | Chemical routes to materials

Process time variation and critical growth onset analysis for nanofoam formation in sucrose-based hydrothermal carbonization

Authors: Carrie Brooks, Julia Lee, Natalie Frese, Kenta Ohtaki, Martin Wortmann, Klaus Sattler

Published in: Journal of Materials Science | Issue 27/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper presents a systematic study of the formation of carbon nanofoam from sucrose by hydrothermal carbonization. It is shown that for the process temperature of 150 °C, carbonization is not a gradual process but rather occurs suddenly at a specific threshold time of 4.5 h. pH value and electrical conductivity (EC) of the sucrose solution were monitored during carbonization. In the first 4.5 h prior to carbonization, the sucrose solution shows a sharp drop from pH 7.8 to pH 2 and sharp increase of EC. From this point on the values of pH and EC remain approximately constant. After the 4.5 h threshold, we examined the evolution of mass yield, density and morphology of the resulting carbon nanofoam. The yield first shows a steep increase around 4.5 h and then a further gradual increase up to 38% at 54.6 h. The mass density just after the 4.5 h threshold is 0.28 g/cm3 and decreases with process time to reach a constant value of 0.14 g/cm3, between 20 and 54.6 h. This shows that desired conditions, such as low density and high yield, are obtained with sufficient process time below 5 h. Due to the release of intermediates of the conversion reaction into the sucrose solution, both pH and EC were found to be excellent indicators for the progression of hydrothermal carbonization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sattler KD (ed) (2020). 21st century nanoscience – a handbook: low-dimensional materials and morphologies (volume four), 1st edn. CRC Press, Boca Raton Sattler KD (ed) (2020). 21st century nanoscience – a handbook: low-dimensional materials and morphologies (volume four), 1st edn. CRC Press, Boca Raton
2.
go back to reference Sattler KD (ed) (2016). Carbon nanomaterials sourcebook, two-volume set, 1st edn. CRC Press, Boca Raton Sattler KD (ed) (2016). Carbon nanomaterials sourcebook, two-volume set, 1st edn. CRC Press, Boca Raton
3.
go back to reference Wortmann M et al (2020). Chemical and morphological transition of poly(acrylonitrile)/poly(vinylidene fluoride) blend nanofibers during oxidative stabilization and incipient carbonization. Nanomaterials 10(6):1210 Wortmann M et al (2020). Chemical and morphological transition of poly(acrylonitrile)/poly(vinylidene fluoride) blend nanofibers during oxidative stabilization and incipient carbonization. Nanomaterials 10(6):1210
4.
go back to reference Liu C et al (2017). Facile synthesis of nickel nanofoam architectures for applications in li-ion batteries. Energ Technol 5(3):422–427 Liu C et al (2017). Facile synthesis of nickel nanofoam architectures for applications in li-ion batteries. Energ Technol 5(3):422–427
5.
go back to reference Iwu KO et al (2016). Facile synthesis of Ni nanofoam for flexible and low-cost non-enzymatic glucose sensing. Sens Actuators B-Chem 224:764–771 Iwu KO et al (2016). Facile synthesis of Ni nanofoam for flexible and low-cost non-enzymatic glucose sensing. Sens Actuators B-Chem 224:764–771
6.
go back to reference Lacerda JN et al (2020). Manganese oxide nanofoam prepared by pulsed laser deposition for high performance supercapacitor electrodes. Mater Chem Phys 242:122459 Lacerda JN et al (2020). Manganese oxide nanofoam prepared by pulsed laser deposition for high performance supercapacitor electrodes. Mater Chem Phys 242:122459
7.
go back to reference Iino T, Nakamura K (2009). Acoustic and acousto-optic characteristics of silicon nanofoam. Jpn J Appl Phys 48(7):07GE01 Iino T, Nakamura K (2009). Acoustic and acousto-optic characteristics of silicon nanofoam. Jpn J Appl Phys 48(7):07GE01
8.
go back to reference Jia H et al (2015). Deep eutectic solvent-assisted growth of gold nanofoams and their excellent catalytic properties. J Mol Liq 212:763–766 Jia H et al (2015). Deep eutectic solvent-assisted growth of gold nanofoams and their excellent catalytic properties. J Mol Liq 212:763–766
9.
go back to reference Dutta A et al (2018). Beyond copper in co2 electrolysis: effective hydrocarbon production on silver-nanofoam catalysts. ACS Catal 8(9):8357–8368 Dutta A et al (2018). Beyond copper in co2 electrolysis: effective hydrocarbon production on silver-nanofoam catalysts. ACS Catal 8(9):8357–8368
10.
go back to reference Lamaison S et al (2019). Zn-Cu alloy nanofoams as efficient catalysts for the reduction of co2 to syngas mixtures with a potential-independent h-2/co ratio. Chemsuschem 12(2):511–517 Lamaison S et al (2019). Zn-Cu alloy nanofoams as efficient catalysts for the reduction of co2 to syngas mixtures with a potential-independent h-2/co ratio. Chemsuschem 12(2):511–517
11.
go back to reference Jo H et al (2014). Novel method of powder-based processing of copper nanofoams for their potential use in energy applications. Mater Chem Phys 145(1–2):6–11 Jo H et al (2014). Novel method of powder-based processing of copper nanofoams for their potential use in energy applications. Mater Chem Phys 145(1–2):6–11
12.
go back to reference Vukovic I et al (2011). Supramolecular route to well-ordered metal nanofoams. ACS Nano 5(8):6339–6348 Vukovic I et al (2011). Supramolecular route to well-ordered metal nanofoams. ACS Nano 5(8):6339–6348
13.
go back to reference Bartunek V et al (2017). Facile synthesis of magnetic Co nanofoam by low-temperature thermal decomposition of Co glycerolate. Micro Nano Lett 12(5):278–280 Bartunek V et al (2017). Facile synthesis of magnetic Co nanofoam by low-temperature thermal decomposition of Co glycerolate. Micro Nano Lett 12(5):278–280
14.
go back to reference Grant-Jacob JA, Mills B, Eason RW (2014). Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation. J Phys D-Appl Phys 47(5):055105 Grant-Jacob JA, Mills B, Eason RW (2014). Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation. J Phys D-Appl Phys 47(5):055105
15.
go back to reference Manzo DJ et al (2019). Structural and compositional analysis of GaSb nanofoams obtained by ion irradiation of sputtered films. Thin Solid Films 687:137447 Manzo DJ et al (2019). Structural and compositional analysis of GaSb nanofoams obtained by ion irradiation of sputtered films. Thin Solid Films 687:137447
16.
go back to reference Levesque A et al (2004). Monodisperse carbon nanopearls in a foam-like arrangement: a new carbon nano-compound for cold cathodes. Thin Solid Films 464:308–314 Levesque A et al (2004). Monodisperse carbon nanopearls in a foam-like arrangement: a new carbon nano-compound for cold cathodes. Thin Solid Films 464:308–314
17.
go back to reference Sattler KD (ed) (2016). Carbon nanomaterials sourcebook: graphene, fullerenes, nanotubes, and nanodiamonds (volume one), 1st edn. CRC Press, Boca Raton Sattler KD (ed) (2016). Carbon nanomaterials sourcebook: graphene, fullerenes, nanotubes, and nanodiamonds (volume one), 1st edn. CRC Press, Boca Raton
18.
go back to reference Sattler KD (ed) (2016). Carbon nanomaterials sourcebook: nanoparticles, nanocapsules, nanofibers, nanoporous structures, and nanocomposites (volume two), 1st edn. CRC Press, Boca Raton Sattler KD (ed) (2016). Carbon nanomaterials sourcebook: nanoparticles, nanocapsules, nanofibers, nanoporous structures, and nanocomposites (volume two), 1st edn. CRC Press, Boca Raton
19.
go back to reference Tekin K, Karagoz S, Bektas S (2014). A review of hydrothermal biomass processing. Renew Sustain Energy Rev 40:673–687 Tekin K, Karagoz S, Bektas S (2014). A review of hydrothermal biomass processing. Renew Sustain Energy Rev 40:673–687
20.
go back to reference Funke A, Ziegler F (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Bioref-Biofpr 4(2):160–177 Funke A, Ziegler F (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Bioref-Biofpr 4(2):160–177
21.
go back to reference Hu B et al (2010). Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22(7):813–828 Hu B et al (2010). Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22(7):813–828
22.
go back to reference Titirici MM et al (2007). A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chem Mater 19(17):4205–4212 Titirici MM et al (2007). A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chem Mater 19(17):4205–4212
23.
go back to reference Khan TA et al (2019). Synthesis and characterization of carbon microspheres from rubber wood by hydrothermal carbonization. J Chem Technol Biotechnol 94(5):1374–1383 Khan TA et al (2019). Synthesis and characterization of carbon microspheres from rubber wood by hydrothermal carbonization. J Chem Technol Biotechnol 94(5):1374–1383
24.
go back to reference Fuertes AB et al (2010). Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust J Soil Res 48(6–7):618–626 Fuertes AB et al (2010). Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust J Soil Res 48(6–7):618–626
25.
go back to reference Gupta A, Kour R, Brar LK (2019). Facile synthesis of carbon nanospheres from saccharides for photocatalytic applications. Sn Appl Sci 1(10):1–8 Gupta A, Kour R, Brar LK (2019). Facile synthesis of carbon nanospheres from saccharides for photocatalytic applications. Sn Appl Sci 1(10):1–8
26.
go back to reference Sevilla M, Fuertes AB (2009). Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemi-a Eur J 15(16):4195–4203 Sevilla M, Fuertes AB (2009). Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemi-a Eur J 15(16):4195–4203
27.
go back to reference Frese N et al (2017). Diamond-like carbon nanofoam from low-temperature hydrothermal carbonization of a sucrose/naphtalene precurson solution. J Carbon Res 3:23 Frese N et al (2017). Diamond-like carbon nanofoam from low-temperature hydrothermal carbonization of a sucrose/naphtalene precurson solution. J Carbon Res 3:23
28.
go back to reference Mi YZ et al (2008). Synthesis of carbon micro-spheres by a glucose hydrothermal method. Mater Lett 62(8–9):1194–1196 Mi YZ et al (2008). Synthesis of carbon micro-spheres by a glucose hydrothermal method. Mater Lett 62(8–9):1194–1196
29.
go back to reference Sevilla M, Fuertes AB (2009). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47(9):2281–2289 Sevilla M, Fuertes AB (2009). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47(9):2281–2289
30.
go back to reference Cheng YL et al (2017). Controllable morphologies of carbon microspheres via green hydrothermal method using fructose and xylose. Chem Lett 46(9):1400–1402 Cheng YL et al (2017). Controllable morphologies of carbon microspheres via green hydrothermal method using fructose and xylose. Chem Lett 46(9):1400–1402
31.
go back to reference Lagazzo A et al (2016). Hydrothermal synthesis of pectin derived nanoporous carbon material. Mater Lett 171:212–215 Lagazzo A et al (2016). Hydrothermal synthesis of pectin derived nanoporous carbon material. Mater Lett 171:212–215
32.
go back to reference Mitchell ST et al (2015). Ultralight carbon nanofoam from naphtalene-mediated hydrothermal sucrose carbonization. Carbon 95:434–441 Mitchell ST et al (2015). Ultralight carbon nanofoam from naphtalene-mediated hydrothermal sucrose carbonization. Carbon 95:434–441
35.
go back to reference Wortmann M et al (2020). On the reliability of highly magnified micrographs for structural analysis in materials science. Sci Rep 10(1):1–8 Wortmann M et al (2020). On the reliability of highly magnified micrographs for structural analysis in materials science. Sci Rep 10(1):1–8
36.
go back to reference Smith M et al (2016). Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon 110:155–171 Smith M et al (2016). Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon 110:155–171
37.
go back to reference Baccile N et al (2009). Structural characterization of hydrothermal carbon spheres by advanced solid-state mas c-13 nmr investigations. J Phys Chem C 113(22):9644–9654 Baccile N et al (2009). Structural characterization of hydrothermal carbon spheres by advanced solid-state mas c-13 nmr investigations. J Phys Chem C 113(22):9644–9654
38.
go back to reference Lide DR (2005). CRC handbook of chemistry and physics, 86th edn. CRC (FL) Press, Baco Raton Lide DR (2005). CRC handbook of chemistry and physics, 86th edn. CRC (FL) Press, Baco Raton
39.
go back to reference Hao SW et al (2016). Activated carbon derived from hydrothermal treatment of sucrose and its air filtration application. RSC Adv 6(111):109950–109959 Hao SW et al (2016). Activated carbon derived from hydrothermal treatment of sucrose and its air filtration application. RSC Adv 6(111):109950–109959
40.
go back to reference Qi YJ et al (2016). Mechanism for the formation and growth of carbonaceous spheres from sucrose by hydrothermal carbonization. RSC Adv 6(25):20814–20823 Qi YJ et al (2016). Mechanism for the formation and growth of carbonaceous spheres from sucrose by hydrothermal carbonization. RSC Adv 6(25):20814–20823
41.
go back to reference Wang Q et al (2001). Monodispersed hard carbon spherules with uniform nanopores. Carbon 39(14):2211–2214 Wang Q et al (2001). Monodispersed hard carbon spherules with uniform nanopores. Carbon 39(14):2211–2214
42.
go back to reference Simsir H, Eltugral N, Karagoz S (2017). Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization. Biores Technol 246:82–87 Simsir H, Eltugral N, Karagoz S (2017). Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization. Biores Technol 246:82–87
43.
go back to reference Frese N et al (2016). Fundamental properties of high-quality carbon nanofoam: from low to high density. Beilstein J Nanotechnol 7:2065–2073 Frese N et al (2016). Fundamental properties of high-quality carbon nanofoam: from low to high density. Beilstein J Nanotechnol 7:2065–2073
44.
go back to reference Nizamuddin S et al (2017). An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew Sustain Energy Rev 73:1289–1299 Nizamuddin S et al (2017). An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew Sustain Energy Rev 73:1289–1299
Metadata
Title
Process time variation and critical growth onset analysis for nanofoam formation in sucrose-based hydrothermal carbonization
Authors
Carrie Brooks
Julia Lee
Natalie Frese
Kenta Ohtaki
Martin Wortmann
Klaus Sattler
Publication date
04-07-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 27/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06222-4

Other articles of this Issue 27/2021

Journal of Materials Science 27/2021 Go to the issue

Premium Partners