Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Production and Characteristics of Cellulose from Different Sources

Authors : Thomas Heinze, Omar A. El Seoud, Andreas Koschella

Published in: Cellulose Derivatives

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cellulose constitutes the most abundant renewable polymer resource available world-wide. It has been estimated that by photosynthesis, 1011 − 1012 t are synthesized annually in a rather pure form, for example in the seed hairs of the cotton plant, but mostly cellulose is combined with lignin and other polysaccharides (hemicelluloses) in the cell wall of woody plants.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach, Yverdon Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach, Yverdon
2.
go back to reference Hon DNS (1996) Chemical modification of lignocellulosic materials. Marcel Dekker Inc, New York, Basel, Hong Kong Hon DNS (1996) Chemical modification of lignocellulosic materials. Marcel Dekker Inc, New York, Basel, Hong Kong
3.
go back to reference Pettersen RC (1984) The chemical composition of wood. Adv Chem Ser 207:57–126CrossRef Pettersen RC (1984) The chemical composition of wood. Adv Chem Ser 207:57–126CrossRef
4.
go back to reference Qu T, Guo W, Shen L, Xiao J, Zhao K (2011) Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind Eng Chem Res 50:10424–10433CrossRef Qu T, Guo W, Shen L, Xiao J, Zhao K (2011) Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind Eng Chem Res 50:10424–10433CrossRef
5.
go back to reference Chen X, Yu J, Zhang Z, Lu C (2011) Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr Polym 85:245–250CrossRef Chen X, Yu J, Zhang Z, Lu C (2011) Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr Polym 85:245–250CrossRef
7.
go back to reference Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234CrossRef Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234CrossRef
9.
go back to reference Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106CrossRef Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106CrossRef
10.
go back to reference Tarchevsky JA, Marchenko GN (1991) Cellulose: biosynthesis and structure. Springer, HeidelbergCrossRef Tarchevsky JA, Marchenko GN (1991) Cellulose: biosynthesis and structure. Springer, HeidelbergCrossRef
11.
go back to reference Nakatsubo F, Kamitakahara H, Hori M (1996) Cationic ring-opening polymerization of 3,6-di-O-benzyl-alpha-D-glucose 1,2,4-orthopivalate and the first chemical synthesis of cellulose. J Am Chem Soc 118:1677–1681CrossRef Nakatsubo F, Kamitakahara H, Hori M (1996) Cationic ring-opening polymerization of 3,6-di-O-benzyl-alpha-D-glucose 1,2,4-orthopivalate and the first chemical synthesis of cellulose. J Am Chem Soc 118:1677–1681CrossRef
12.
go back to reference Nishimura T, Takano T, Nakatsubo F, Murakami K (1993) Synthetic studies of cellulose. 10. Selection of suitable starting materials for the convergent synthesis of cello-oligosaccharides. Mokuzai Gakkaishi 39:40–47 Nishimura T, Takano T, Nakatsubo F, Murakami K (1993) Synthetic studies of cellulose. 10. Selection of suitable starting materials for the convergent synthesis of cello-oligosaccharides. Mokuzai Gakkaishi 39:40–47
13.
go back to reference Kamitakahara H, Koschella A, Mikawa Y, Nakatsubo F, Heinze T, Klemm D (2008) Synthesis and characterization of 2,6-di-O-methyl celluloses both from natural and synthetic celluloses. Macromol Biosci 8:690–700CrossRef Kamitakahara H, Koschella A, Mikawa Y, Nakatsubo F, Heinze T, Klemm D (2008) Synthesis and characterization of 2,6-di-O-methyl celluloses both from natural and synthetic celluloses. Macromol Biosci 8:690–700CrossRef
14.
go back to reference Kamitakahara H, Nakatsubo F, Klemm D (2006) Block co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides as model compounds for methylcellulose and its dissolution/gelation behaviour. Cellulose 13:375–392CrossRef Kamitakahara H, Nakatsubo F, Klemm D (2006) Block co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides as model compounds for methylcellulose and its dissolution/gelation behaviour. Cellulose 13:375–392CrossRef
15.
go back to reference Kobayashi S, Kashiwa K, Kawasaki T, Shoda S (1991) Novel method for polysaccharide synthesis using an enzyme: the first in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst. J Am Chem Soc 113:3079–3084CrossRef Kobayashi S, Kashiwa K, Kawasaki T, Shoda S (1991) Novel method for polysaccharide synthesis using an enzyme: the first in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst. J Am Chem Soc 113:3079–3084CrossRef
16.
go back to reference Kobayashi S, Shoda S, Lee J, Okuda K, Brown RM Jr, Kuga S (1994) Direct visualization of synthetic cellulose formation via enzymatic polymerization using transmission electron-microscopy. Macromol Chem Phys 195:1319–1326CrossRef Kobayashi S, Shoda S, Lee J, Okuda K, Brown RM Jr, Kuga S (1994) Direct visualization of synthetic cellulose formation via enzymatic polymerization using transmission electron-microscopy. Macromol Chem Phys 195:1319–1326CrossRef
17.
go back to reference Committee on Synthetic Hierarchical Structures, National Materials Advisory Board, Commission on Engineering and Technical Issues, National Research Council (1994) Hierarchical structures in biology as a guide for new materials technology. National Academy Press, Washington, DC Committee on Synthetic Hierarchical Structures, National Materials Advisory Board, Commission on Engineering and Technical Issues, National Research Council (1994) Hierarchical structures in biology as a guide for new materials technology. National Academy Press, Washington, DC
18.
go back to reference Ebringerová A, Heinze T (2000) Xylan and xylan derivatives—biopolymers with valuable properties. 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556CrossRef Ebringerová A, Heinze T (2000) Xylan and xylan derivatives—biopolymers with valuable properties. 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556CrossRef
19.
go back to reference Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides, structure of polysaccharides. Springer, Berlin Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides, structure of polysaccharides. Springer, Berlin
20.
go back to reference Sjöström E (1993) Wood chemistry: fundamentals and applications. Academic Press, Cambridge. ISBN 012647480X Sjöström E (1993) Wood chemistry: fundamentals and applications. Academic Press, Cambridge. ISBN 012647480X
21.
go back to reference Sixta H (2006) Introduction. In: Sixta H (ed) Handbook of pulp, vol 1. Wiley-VCH, Weinheim, pp 3–19CrossRef Sixta H (2006) Introduction. In: Sixta H (ed) Handbook of pulp, vol 1. Wiley-VCH, Weinheim, pp 3–19CrossRef
22.
go back to reference Fink H-P, Walenta E (1994) X-ray diffraction investigations of cellulose supramolecular structure at processing. Papier (Bingen, Germany) 48:739–742 Fink H-P, Walenta E (1994) X-ray diffraction investigations of cellulose supramolecular structure at processing. Papier (Bingen, Germany) 48:739–742
23.
go back to reference Toland J, Galasso L, Lees D, Rodden G (2002) Pulp Paper International, Paperloop, p 5 Toland J, Galasso L, Lees D, Rodden G (2002) Pulp Paper International, Paperloop, p 5
24.
go back to reference Sixta H (2006) Sulfite chemical pulping. In: Sixta H (ed) Handbook of pulp, vol 1. Wiley-VCH, Weinheim, pp 392–510CrossRef Sixta H (2006) Sulfite chemical pulping. In: Sixta H (ed) Handbook of pulp, vol 1. Wiley-VCH, Weinheim, pp 392–510CrossRef
25.
26.
go back to reference Berzings V, Tasmanm JE (1957) The relationship of the kappa number of the lignin content of pulp materials. Pulp Pap Can 9:154–158 Berzings V, Tasmanm JE (1957) The relationship of the kappa number of the lignin content of pulp materials. Pulp Pap Can 9:154–158
27.
go back to reference Bremer Baumwollbörse (2008) “Cotton School”, Produktinformationen zur Baumwolle Bremer Baumwollbörse (2008) “Cotton School”, Produktinformationen zur Baumwolle
28.
go back to reference Temming H, Grunert H, Huckfeldt H (1973) Temming linters—Technical information on cotton cellulose. English translation of the 2nd revised German edition (1972), Peter Temming AG, Glückstadt; Bremer Baumwollbörse, “Cotton School”, Produktinformationen zur Baumwolle, 2008 Temming H, Grunert H, Huckfeldt H (1973) Temming linters—Technical information on cotton cellulose. English translation of the 2nd revised German edition (1972), Peter Temming AG, Glückstadt; Bremer Baumwollbörse, “Cotton School”, Produktinformationen zur Baumwolle, 2008
29.
go back to reference Rafiq Chaudhry M, Guitchounts A (2003) International Cotton Advisory Committee, Cotton Facts, Technical Paper No. 25, ISBN 0-9704918-3-2 Rafiq Chaudhry M, Guitchounts A (2003) International Cotton Advisory Committee, Cotton Facts, Technical Paper No. 25, ISBN 0-9704918-3-2
30.
go back to reference Bremer Baumwollbörse, Bremen Cotton Report No. 33/34, August 29, 2008, pp 8–9 Bremer Baumwollbörse, Bremen Cotton Report No. 33/34, August 29, 2008, pp 8–9
31.
go back to reference Sczostak A (2009) Cotton linters: an alternative cellulosic raw material. Macromol Symp 280:45–53CrossRef Sczostak A (2009) Cotton linters: an alternative cellulosic raw material. Macromol Symp 280:45–53CrossRef
32.
go back to reference Carpenter F (1967) Evaluation of the fibrosampler and the digital fibrograph for sampling cotton fibers and measuring length characteristics (Marketing research report). Agricultural Research Service, U.S. Department of Agriculture, ASIN: B0006RFSGI Carpenter F (1967) Evaluation of the fibrosampler and the digital fibrograph for sampling cotton fibers and measuring length characteristics (Marketing research report). Agricultural Research Service, U.S. Department of Agriculture, ASIN: B0006RFSGI
33.
go back to reference Chandra M (1998) Use of non-wood plant fibers for pulp and paper industry in Asia: potential in China. Master’s degree thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA Chandra M (1998) Use of non-wood plant fibers for pulp and paper industry in Asia: potential in China. Master’s degree thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
34.
go back to reference McNutt JA, Rennel J (1997) The future of fiber in tomorrow’s world. Pulp Pap Int 39:34–36 McNutt JA, Rennel J (1997) The future of fiber in tomorrow’s world. Pulp Pap Int 39:34–36
35.
go back to reference Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31:575–584CrossRef Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31:575–584CrossRef
37.
go back to reference Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ 24:189–226CrossRef Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ 24:189–226CrossRef
40.
go back to reference Sun JX, Sun XF, Sun RC, Su YQ (2004) Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr Polym 56:195–204CrossRef Sun JX, Sun XF, Sun RC, Su YQ (2004) Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr Polym 56:195–204CrossRef
41.
go back to reference Van Nguu N (2000) Issues and opportunities of wide adoption of hybrid rice outside china, with emphasis on south and southeast Asia. FAO Rice Information, Vol. 2, Chapter I Van Nguu N (2000) Issues and opportunities of wide adoption of hybrid rice outside china, with emphasis on south and southeast Asia. FAO Rice Information, Vol. 2, Chapter I
42.
go back to reference Agblevor FA, Ibrahim MM, El-Zawawy WK (2007) Coupled acid and enzyme mediated production of microcrystalline cellulose from corn cob and cotton gin waste. Cellulose 14:247–256CrossRef Agblevor FA, Ibrahim MM, El-Zawawy WK (2007) Coupled acid and enzyme mediated production of microcrystalline cellulose from corn cob and cotton gin waste. Cellulose 14:247–256CrossRef
43.
go back to reference Zhang M, Qi W, Liu R, Su R, Wu S, He Z (2010) Fractionating lignocellulose by formic acid: characterization of major components. Biomass Bioenergy 34:525–532CrossRef Zhang M, Qi W, Liu R, Su R, Wu S, He Z (2010) Fractionating lignocellulose by formic acid: characterization of major components. Biomass Bioenergy 34:525–532CrossRef
44.
go back to reference Ibrahim M, Agblevor FA, El-Zawawy WK (2010) Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass. BioResources 5:397–418 Ibrahim M, Agblevor FA, El-Zawawy WK (2010) Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass. BioResources 5:397–418
45.
go back to reference Chen J, Yan S, Ruan J (1996) A study on the preparation, structure and properties of microcrystalline cellulose. J Macromol Sci Part A Pure Appl Chem A33:1851–1862 Chen J, Yan S, Ruan J (1996) A study on the preparation, structure and properties of microcrystalline cellulose. J Macromol Sci Part A Pure Appl Chem A33:1851–1862
46.
go back to reference Selim IZ, Mansour OY, Mohamed SA (1996) Physical characterization of pulps. II. Rice straw and bagasse pulps bleached by nonconventional two-stage hydrogen peroxide method and paper sheet making. Polym-Plast Technol Eng 35:649–667CrossRef Selim IZ, Mansour OY, Mohamed SA (1996) Physical characterization of pulps. II. Rice straw and bagasse pulps bleached by nonconventional two-stage hydrogen peroxide method and paper sheet making. Polym-Plast Technol Eng 35:649–667CrossRef
47.
go back to reference Moniruzzama M (1996) Effect of steam explosion on the physicochemical properties and enzymic saccharification of rice straw. Appl Biochem Biotechnol 59:283–297CrossRef Moniruzzama M (1996) Effect of steam explosion on the physicochemical properties and enzymic saccharification of rice straw. Appl Biochem Biotechnol 59:283–297CrossRef
48.
go back to reference Lim SK, Son T-W, Lee D-W, Park BK, Cho KM (2001) Novel regenerated cellulose fibers from rice straw. J Appl Polym Sci 82:1705–1708CrossRef Lim SK, Son T-W, Lee D-W, Park BK, Cho KM (2001) Novel regenerated cellulose fibers from rice straw. J Appl Polym Sci 82:1705–1708CrossRef
49.
go back to reference Sun JX, Xu F, Geng ZC, Sun XF, Sun RC (2005) Comparative study of cellulose isolated by totally chlorine-free method from wood and cereal straw. J Appl Polym Sci 97:322–335CrossRef Sun JX, Xu F, Geng ZC, Sun XF, Sun RC (2005) Comparative study of cellulose isolated by totally chlorine-free method from wood and cereal straw. J Appl Polym Sci 97:322–335CrossRef
50.
go back to reference Biswas A, Saha BC, Lawton JW, Shogren RL, Willett JL (2006) Process for obtaining cellulose acetate from agricultural by-products. Carbohydr Polym 64:134–137CrossRef Biswas A, Saha BC, Lawton JW, Shogren RL, Willett JL (2006) Process for obtaining cellulose acetate from agricultural by-products. Carbohydr Polym 64:134–137CrossRef
51.
go back to reference El-Sakhawy M, Hassan ML (2007) Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym 67:1–10CrossRef El-Sakhawy M, Hassan ML (2007) Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym 67:1–10CrossRef
52.
go back to reference He Y, Pang Y, Liu Y, Li X, Wang K (2008) Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels 22:2775–2781CrossRef He Y, Pang Y, Liu Y, Li X, Wang K (2008) Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels 22:2775–2781CrossRef
53.
go back to reference Abdel-Mohdy FA, Abdel-Halim ES, Abu-Ayana YM, El-Sawy SM (2009) Rice straw as a new resource for some beneficial uses. Carbohydr Polym 75:44–51CrossRef Abdel-Mohdy FA, Abdel-Halim ES, Abu-Ayana YM, El-Sawy SM (2009) Rice straw as a new resource for some beneficial uses. Carbohydr Polym 75:44–51CrossRef
54.
go back to reference Adel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2010) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresour Technol 101:4446–4455CrossRef Adel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2010) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresour Technol 101:4446–4455CrossRef
55.
go back to reference Adel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials Part II: Physicochemical properties. Carbohydr Polym 83:676–687CrossRef Adel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials Part II: Physicochemical properties. Carbohydr Polym 83:676–687CrossRef
56.
go back to reference Chen HT, Funaoka M, Lai YZ (1998) Characteristics of bagasse in situ and in alkaline delignification. Holzforschung 52:635–639CrossRef Chen HT, Funaoka M, Lai YZ (1998) Characteristics of bagasse in situ and in alkaline delignification. Holzforschung 52:635–639CrossRef
57.
go back to reference Rajini R, Venkateswarlu U, Rose C, Sastry TP (2001) Studies on the composites of cellulose triacetate (prepared from sugar cane pulp) and gelatin. J Appl Polym Sci 82:847–853CrossRef Rajini R, Venkateswarlu U, Rose C, Sastry TP (2001) Studies on the composites of cellulose triacetate (prepared from sugar cane pulp) and gelatin. J Appl Polym Sci 82:847–853CrossRef
58.
go back to reference Sasaki M, Adschiri T, Arai K (2003) Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresour Technol 86:301–304CrossRef Sasaki M, Adschiri T, Arai K (2003) Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresour Technol 86:301–304CrossRef
59.
go back to reference Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339CrossRef Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339CrossRef
60.
go back to reference Abou-Yousef H, El-Sakhawy M, Kamel S (2005) Multi-stage bagasse pulping by using alkali/Caro’s acid treatment. Ind Crops Prod 21:337–341CrossRef Abou-Yousef H, El-Sakhawy M, Kamel S (2005) Multi-stage bagasse pulping by using alkali/Caro’s acid treatment. Ind Crops Prod 21:337–341CrossRef
61.
go back to reference Ibrahim AA, Nada AMA, Hagemann U, El Seoud OA (1996) Preparation of dissolving pulp from sugarcane bagasse, and its acetylation under homogeneous solution condition. Holzforschung 50:221–225CrossRef Ibrahim AA, Nada AMA, Hagemann U, El Seoud OA (1996) Preparation of dissolving pulp from sugarcane bagasse, and its acetylation under homogeneous solution condition. Holzforschung 50:221–225CrossRef
62.
go back to reference Liu C-F, Ren J-L, Xu F, Liu J-J, Sun J-X, Sun R-C (2006) Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J Agric Food Chem 54:5742–5748CrossRef Liu C-F, Ren J-L, Xu F, Liu J-J, Sun J-X, Sun R-C (2006) Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J Agric Food Chem 54:5742–5748CrossRef
63.
go back to reference Liu CF, Sun RC, Zhang AP, Ren JL (2007) Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium. Carbohydr Polym 68:17–25CrossRef Liu CF, Sun RC, Zhang AP, Ren JL (2007) Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium. Carbohydr Polym 68:17–25CrossRef
64.
go back to reference Ruzene DS, Silva DP, Vicente AA, Teixeira JA, de Amorim MTP, Gonçalves AR (2009) Cellulosic films obtained from the treatment of sugarcane bagasse fibers with N-methylmorpholine-N-oxide (NMMO). Appl Biochem Biotechnol 154:217–226CrossRef Ruzene DS, Silva DP, Vicente AA, Teixeira JA, de Amorim MTP, Gonçalves AR (2009) Cellulosic films obtained from the treatment of sugarcane bagasse fibers with N-methylmorpholine-N-oxide (NMMO). Appl Biochem Biotechnol 154:217–226CrossRef
65.
go back to reference Zhao X-B, Wang L, Liu D-H (2008) Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J Chem Technol Biotechnol 83:950–956CrossRef Zhao X-B, Wang L, Liu D-H (2008) Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J Chem Technol Biotechnol 83:950–956CrossRef
66.
go back to reference Papatheofanous MG, Billa E, Koullas DP, Monties B, Kuokios EG (1995) Two-stage acid-catalyzed fractionation of lignocellulosic biomass in aqueous ethanol systems at low temperatures. Bioresour Technol 54:305–310CrossRef Papatheofanous MG, Billa E, Koullas DP, Monties B, Kuokios EG (1995) Two-stage acid-catalyzed fractionation of lignocellulosic biomass in aqueous ethanol systems at low temperatures. Bioresour Technol 54:305–310CrossRef
67.
go back to reference Sun X-F, Sun R-C, Su Y, Sun J-X (2004) Comparative study of crude and purified cellulose from wheat straw. J Agric Food Chem 52:839–847CrossRef Sun X-F, Sun R-C, Su Y, Sun J-X (2004) Comparative study of crude and purified cellulose from wheat straw. J Agric Food Chem 52:839–847CrossRef
68.
go back to reference Coutts RSP, Warden PG (1992) Sisal pulp reinforced cement mortar. Cem Concr Composites 14:17–21CrossRef Coutts RSP, Warden PG (1992) Sisal pulp reinforced cement mortar. Cem Concr Composites 14:17–21CrossRef
69.
go back to reference Savastano H Jr, Warden PG, Coutts RSP (2000) Brazilian waste fibers as reinforcement for cement-based composites. Cem Concr Composites 22:379–384CrossRef Savastano H Jr, Warden PG, Coutts RSP (2000) Brazilian waste fibers as reinforcement for cement-based composites. Cem Concr Composites 22:379–384CrossRef
70.
go back to reference Savastano H Jr, Warden PG, Coutts RSP (2004) Evaluation of pulps from natural fibrous material for use as reinforcement in cement product. Mater Manuf Processes 19:963–978CrossRef Savastano H Jr, Warden PG, Coutts RSP (2004) Evaluation of pulps from natural fibrous material for use as reinforcement in cement product. Mater Manuf Processes 19:963–978CrossRef
71.
go back to reference Morán JI, Alvarez VA, Cyras VP, Vásquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159CrossRef Morán JI, Alvarez VA, Cyras VP, Vásquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159CrossRef
72.
go back to reference Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411CrossRef Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411CrossRef
73.
go back to reference Hammett AL, Youngs RL, Sun X, Chandra M (2001) Non-wood fiber as an alternative to wood fiber in china’s pulp and paper industry. Holzforschung 55:219–224CrossRef Hammett AL, Youngs RL, Sun X, Chandra M (2001) Non-wood fiber as an alternative to wood fiber in china’s pulp and paper industry. Holzforschung 55:219–224CrossRef
74.
go back to reference Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef
75.
go back to reference Johansson A, Aaltonen O, Ylinen P (1987) Organosolv pulping: methods and pulp properties. Biomass 13:45–65CrossRef Johansson A, Aaltonen O, Ylinen P (1987) Organosolv pulping: methods and pulp properties. Biomass 13:45–65CrossRef
76.
go back to reference Sixta H, Harms H, Dapia S, Parajo JC, Puls J, Saake B, Fink H-P, Roeder T (2004) Evaluation of new organosolv dissolving pulps. Part I: preparation, analytical characterization and viscose processability. Cellulose 11:73–83CrossRef Sixta H, Harms H, Dapia S, Parajo JC, Puls J, Saake B, Fink H-P, Roeder T (2004) Evaluation of new organosolv dissolving pulps. Part I: preparation, analytical characterization and viscose processability. Cellulose 11:73–83CrossRef
77.
go back to reference Focher B, Marzetti A, Crescenzi V (eds) (1991) Steam explosion techniques fundamentals and applications. Gordon and Breach Publishers, Philadelphia Focher B, Marzetti A, Crescenzi V (eds) (1991) Steam explosion techniques fundamentals and applications. Gordon and Breach Publishers, Philadelphia
78.
go back to reference Fu D, Mazza G, Tamaki Y (2010) Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem 58:2915–2922CrossRef Fu D, Mazza G, Tamaki Y (2010) Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem 58:2915–2922CrossRef
79.
go back to reference Schacht C, Zetzl C, Brunner G (2008) From plant materials to ethanol by means of supercritical fluid technology. J Supercrit Fluids 46:299–321CrossRef Schacht C, Zetzl C, Brunner G (2008) From plant materials to ethanol by means of supercritical fluid technology. J Supercrit Fluids 46:299–321CrossRef
80.
go back to reference Mikkola J-P, Kirilin A, Tuuf J-C, Pranovich A, Holmbom B, Kustov LM, Murzin DY, Salmi T (2007) Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chem 9:1229–1237CrossRef Mikkola J-P, Kirilin A, Tuuf J-C, Pranovich A, Holmbom B, Kustov LM, Murzin DY, Salmi T (2007) Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chem 9:1229–1237CrossRef
81.
go back to reference Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655CrossRef Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655CrossRef
82.
go back to reference Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRef Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRef
83.
go back to reference Brown RM Jr, Saxena IM (2000) Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem 38:57–67CrossRef Brown RM Jr, Saxena IM (2000) Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem 38:57–67CrossRef
84.
go back to reference Cannon RE, Anderson SM (1991) Biogenesis of Bacterial Cellulose. Crit Rev Microbiol 17:435–447CrossRef Cannon RE, Anderson SM (1991) Biogenesis of Bacterial Cellulose. Crit Rev Microbiol 17:435–447CrossRef
85.
go back to reference Hestrin S, Schramm M (1954) Synthesis of cellulose by acetobacter xylinum 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352CrossRef Hestrin S, Schramm M (1954) Synthesis of cellulose by acetobacter xylinum 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352CrossRef
86.
go back to reference Brown RM, Willison ZH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci 73:4565–4569CrossRef Brown RM, Willison ZH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci 73:4565–4569CrossRef
87.
go back to reference Zaar K (1977) Biogenesis of cellulose by Acetobacter xylinum. Cytobiologie 16:1–15 Zaar K (1977) Biogenesis of cellulose by Acetobacter xylinum. Cytobiologie 16:1–15
88.
go back to reference Klemm D, Schumann D, Kramer F, Heßler N, Koth D, Sultanova B (2009) Nanocellulose materials—Different cellulose, different functionality. Macromol Symp 280:60–71CrossRef Klemm D, Schumann D, Kramer F, Heßler N, Koth D, Sultanova B (2009) Nanocellulose materials—Different cellulose, different functionality. Macromol Symp 280:60–71CrossRef
89.
go back to reference Yoshinaga F, Tonouchi N, Watanabe K (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotech Biochem 61:219–224CrossRef Yoshinaga F, Tonouchi N, Watanabe K (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotech Biochem 61:219–224CrossRef
90.
go back to reference VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state C-13 NMR. Macromolecules 17:1465–1472CrossRef VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state C-13 NMR. Macromolecules 17:1465–1472CrossRef
91.
go back to reference Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym 40:137–143CrossRef Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym 40:137–143CrossRef
92.
go back to reference Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145–151CrossRef Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145–151CrossRef
93.
go back to reference Ring DF, Nashed W, Dow T (1984) Liquid loaded pad for medical applications. GB 2131701 A CAN 101:149803 Ring DF, Nashed W, Dow T (1984) Liquid loaded pad for medical applications. GB 2131701 A CAN 101:149803
94.
go back to reference Serafica C, Mormino R, Oster GA, Lentz KE, Koehler P (2006) Mikrobieller Cellulose-Wundverband zur Behandlung chronischer Wunden. DE 60203264 Serafica C, Mormino R, Oster GA, Lentz KE, Koehler P (2006) Mikrobieller Cellulose-Wundverband zur Behandlung chronischer Wunden. DE 60203264
95.
go back to reference Frankenfeld K, Hornung M, Lindner B, Ludwig M, Mülverstedt A, Schmauder H-P (2001) Procedure for the production of specific molded shapes or layers from bacterial cellulose. DE 10022751 A1 CAN 135:256211 Frankenfeld K, Hornung M, Lindner B, Ludwig M, Mülverstedt A, Schmauder H-P (2001) Procedure for the production of specific molded shapes or layers from bacterial cellulose. DE 10022751 A1 CAN 135:256211
96.
go back to reference Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96CrossRef Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96CrossRef
97.
go back to reference Oster G, Lentz K, Koehler K, Hoon R, Serafica G, Mormino R (2002) Solvent dehydrated microbially-derived cellulose for in vivo implantation. US 2002107223 A1 CAN 137:145652 Oster G, Lentz K, Koehler K, Hoon R, Serafica G, Mormino R (2002) Solvent dehydrated microbially-derived cellulose for in vivo implantation. US 2002107223 A1 CAN 137:145652
98.
go back to reference Damien CJ, Oster GA, Beam HA (2005) Thermally modified microbial-derived cellulose for in vivo implantation. US 2005042250 A1 CAN 142:246277 Damien CJ, Oster GA, Beam HA (2005) Thermally modified microbial-derived cellulose for in vivo implantation. US 2005042250 A1 CAN 142:246277
99.
go back to reference Beam H, Serafica G, Damien C, Wright FS (2007) Implantable microbial cellulose materials for various medical applications. WO 2007064772 A2 CAN 147:39244 Beam H, Serafica G, Damien C, Wright FS (2007) Implantable microbial cellulose materials for various medical applications. WO 2007064772 A2 CAN 147:39244
100.
go back to reference Yamanaka S, Ono E, Watanabe K, Kusakabe M, Suzuki Y (1990) Production of hollow cellulose produced by microorganisms for artificial blood vessels. EP 0396344, CAN 114:235093 Yamanaka S, Ono E, Watanabe K, Kusakabe M, Suzuki Y (1990) Production of hollow cellulose produced by microorganisms for artificial blood vessels. EP 0396344, CAN 114:235093
101.
go back to reference Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRef Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRef
102.
go back to reference Dos Anjos B, Novaes AB Jr, Meffert R, Barboza EP (1998) Clinical comparison of cellulose and expanded polytetrafluoroethylene membranes in the treatment of class II furcations in mandibular molars with 6-month re-entry. J Periodontol 69:454–459CrossRef Dos Anjos B, Novaes AB Jr, Meffert R, Barboza EP (1998) Clinical comparison of cellulose and expanded polytetrafluoroethylene membranes in the treatment of class II furcations in mandibular molars with 6-month re-entry. J Periodontol 69:454–459CrossRef
103.
go back to reference Macedo NL, Matuda FS, Macedo LGS, Monteiro ASF, Valera MC, Carvalho YR (2004) Evaluation of two membranes in guided bone tissue regeneration: histological study in rabbits. Braz J Oral Sci 3:395–400 Macedo NL, Matuda FS, Macedo LGS, Monteiro ASF, Valera MC, Carvalho YR (2004) Evaluation of two membranes in guided bone tissue regeneration: histological study in rabbits. Braz J Oral Sci 3:395–400
104.
go back to reference Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res 76A:431–438CrossRef Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res 76A:431–438CrossRef
105.
go back to reference Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRef Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRef
106.
go back to reference Watanabe K, Eto Y, Takano S, Nakamori S, Shibai H, Yamanaka S (1993) A new bacterial cellulose substrate for mammalian cell culture. Cytotechnology 13:107–114CrossRef Watanabe K, Eto Y, Takano S, Nakamori S, Shibai H, Yamanaka S (1993) A new bacterial cellulose substrate for mammalian cell culture. Cytotechnology 13:107–114CrossRef
107.
go back to reference Uryu M, Kurihara N (1993) Acoustic diaphragm and method producing same. US 5274199 Uryu M, Kurihara N (1993) Acoustic diaphragm and method producing same. US 5274199
108.
go back to reference Hwang JU, Park SH, Pyun YR, Yang YG (1999) Speaker vibration plate containing microbial cellulose al principal ingredient KO 100246726 B1 Hwang JU, Park SH, Pyun YR, Yang YG (1999) Speaker vibration plate containing microbial cellulose al principal ingredient KO 100246726 B1
109.
go back to reference Stephens RS, Westland JA, Neogi AN (1990) Production of cholesterol-absorbing bacterial cellulose for use as dietary fiber. US 4960763 A, CAN 114:60730 Stephens RS, Westland JA, Neogi AN (1990) Production of cholesterol-absorbing bacterial cellulose for use as dietary fiber. US 4960763 A, CAN 114:60730
110.
go back to reference Tabuchi M, Baba Y (2005) Design for DNA separation medium using bacterial cellulose fibrils. Anal Chem 77:7090–7093CrossRef Tabuchi M, Baba Y (2005) Design for DNA separation medium using bacterial cellulose fibrils. Anal Chem 77:7090–7093CrossRef
111.
go back to reference Tabuchi M, Kobayashi K, Fujimoto M, Baba Y (2005) Bio-sensing on a chip with compact discs and nanofibers. Lab Chip 5:1412–1415CrossRef Tabuchi M, Kobayashi K, Fujimoto M, Baba Y (2005) Bio-sensing on a chip with compact discs and nanofibers. Lab Chip 5:1412–1415CrossRef
112.
go back to reference Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256CrossRef Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256CrossRef
113.
go back to reference Goelzer FDE, Faria-Tischer PCS, Vitorino JC, Sierakowski M-R, Tischer CA (2009) Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mater Sci Eng C 29:546–551CrossRef Goelzer FDE, Faria-Tischer PCS, Vitorino JC, Sierakowski M-R, Tischer CA (2009) Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mater Sci Eng C 29:546–551CrossRef
114.
go back to reference Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol 72:291–296CrossRef Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol 72:291–296CrossRef
115.
go back to reference Thompson DN, Hamilton MA (2001) Production of bacterial cellulose from alternate feedstocks. Appl Biochem Biotechnol 91–93:503–513CrossRef Thompson DN, Hamilton MA (2001) Production of bacterial cellulose from alternate feedstocks. Appl Biochem Biotechnol 91–93:503–513CrossRef
116.
go back to reference Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization—relation to polyphase structure of cellulose. Ind Eng Chem 48:333–335CrossRef Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization—relation to polyphase structure of cellulose. Ind Eng Chem 48:333–335CrossRef
117.
go back to reference Battista OA (1985) Cellulose, microcrystalline. In: Kroschwitz JI (ed) Encycl Polym Sci Eng 3:86–90 Battista OA (1985) Cellulose, microcrystalline. In: Kroschwitz JI (ed) Encycl Polym Sci Eng 3:86–90
118.
go back to reference Battista OA, Smith PA (1962) Microcrystalline cellulose—oldest polymer finds new industrial uses. Ind Eng Chem 54:20–29CrossRef Battista OA, Smith PA (1962) Microcrystalline cellulose—oldest polymer finds new industrial uses. Ind Eng Chem 54:20–29CrossRef
119.
go back to reference Steege HH, Philipp B (1974) Characterization and use of microcrystalline cellulose. Zellst Pap 23:68–73 Steege HH, Philipp B (1974) Characterization and use of microcrystalline cellulose. Zellst Pap 23:68–73
120.
go back to reference Engelhardt J (1995) General introduction on cellulose: sources, industrial derivatives and commercial application of cellulose. Carbohydr Eur 12:5–14 Engelhardt J (1995) General introduction on cellulose: sources, industrial derivatives and commercial application of cellulose. Carbohydr Eur 12:5–14
121.
go back to reference Fleming K, Gray D, Prasannan S, Matthews S (2000) Cellulose crystallites: a new and robust liquid crystalline medium for the measurement of residual dipolar couplings. J Am Chem Soc 122:5224–5225CrossRef Fleming K, Gray D, Prasannan S, Matthews S (2000) Cellulose crystallites: a new and robust liquid crystalline medium for the measurement of residual dipolar couplings. J Am Chem Soc 122:5224–5225CrossRef
122.
go back to reference Meiland M, Liebert T, Heinze T (2011) Tailoring the degree of polymerization of low molecular weight cellulose. Macromol Mater Eng 296:802–809CrossRef Meiland M, Liebert T, Heinze T (2011) Tailoring the degree of polymerization of low molecular weight cellulose. Macromol Mater Eng 296:802–809CrossRef
123.
go back to reference Meiland M, Liebert T, Baumgaertel A, Schubert US, Heinze T (2011) Alkyl β-d-cellulosides: non-reducing cellulose mimics. Cellulose 18:1585–1598CrossRef Meiland M, Liebert T, Baumgaertel A, Schubert US, Heinze T (2011) Alkyl β-d-cellulosides: non-reducing cellulose mimics. Cellulose 18:1585–1598CrossRef
124.
go back to reference Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980 Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980
125.
go back to reference Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811CrossRef Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811CrossRef
126.
go back to reference Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86:484–494CrossRef Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86:484–494CrossRef
127.
go back to reference Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef
128.
go back to reference Angellier H, Putaux J-L, Molina-Boisseau S, Dupeyre D, Dufresne A (2005) Starch nanocrystal fillers in an acrylic polymer matrix. Macromol Symp 221:95–104CrossRef Angellier H, Putaux J-L, Molina-Boisseau S, Dupeyre D, Dufresne A (2005) Starch nanocrystal fillers in an acrylic polymer matrix. Macromol Symp 221:95–104CrossRef
129.
go back to reference Kroon-Batenburg LMJ, Kroon J, Northolt MG (1986) Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polym Commun 27:290–292CrossRef Kroon-Batenburg LMJ, Kroon J, Northolt MG (1986) Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polym Commun 27:290–292CrossRef
130.
go back to reference Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRef Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRef
131.
go back to reference Odijk T, Lekkerkerker HNW (1985) Theory of the isotropic-liquid crystal phase separation for a solution of bidisperse rodlike macromolecules. J Phys Chem 89:2090–2096CrossRef Odijk T, Lekkerkerker HNW (1985) Theory of the isotropic-liquid crystal phase separation for a solution of bidisperse rodlike macromolecules. J Phys Chem 89:2090–2096CrossRef
132.
go back to reference Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633CrossRef Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633CrossRef
133.
go back to reference Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16:127–134CrossRef Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16:127–134CrossRef
134.
go back to reference Revol JF, Godbout L, Gray DGJ (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci 24:146–149 Revol JF, Godbout L, Gray DGJ (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci 24:146–149
135.
go back to reference De Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRef De Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRef
136.
go back to reference Orts WJ, Godbout L, Marchessault RH, Revol J-F (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small-angle neutron scattering study. Macromolecules 31:5717–5725CrossRef Orts WJ, Godbout L, Marchessault RH, Revol J-F (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small-angle neutron scattering study. Macromolecules 31:5717–5725CrossRef
137.
go back to reference Marchessault RH, Morehead FF, Koch MJ (1961) Hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 16:327–344CrossRef Marchessault RH, Morehead FF, Koch MJ (1961) Hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 16:327–344CrossRef
138.
go back to reference Onogi S, Asada T (1980) Rheology and rheo-optics of polymer liquid crystals. In: Astarita G, Marrucci G, Nicolais L (eds) Rheology. Plenum, New York Onogi S, Asada T (1980) Rheology and rheo-optics of polymer liquid crystals. In: Astarita G, Marrucci G, Nicolais L (eds) Rheology. Plenum, New York
139.
go back to reference Orts WJ, Godbout L, Marchessault RH, Revol JF (1995) Shear-induced alignment of liquid-crystalline suspensions of cellulose microfibrils. ACS Symp Ser 597:335–348CrossRef Orts WJ, Godbout L, Marchessault RH, Revol JF (1995) Shear-induced alignment of liquid-crystalline suspensions of cellulose microfibrils. ACS Symp Ser 597:335–348CrossRef
140.
go back to reference Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261CrossRef Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261CrossRef
141.
go back to reference Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82CrossRef Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82CrossRef
142.
go back to reference Viet D, Beck-Candanedo S, Gray DG (2007) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113CrossRef Viet D, Beck-Candanedo S, Gray DG (2007) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113CrossRef
143.
go back to reference Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRef Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRef
144.
go back to reference Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef
145.
go back to reference Dubief D, Samain E, Dufresne A (1999) Polysaccharide microcrystals reinforced amorphous poly(β-hydroxyoctanoate) nanocomposite materials. Macromolecules 32:5765–5771CrossRef Dubief D, Samain E, Dufresne A (1999) Polysaccharide microcrystals reinforced amorphous poly(β-hydroxyoctanoate) nanocomposite materials. Macromolecules 32:5765–5771CrossRef
146.
go back to reference Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 32:7396–7401CrossRef Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 32:7396–7401CrossRef
147.
go back to reference Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites 1. Structural analysis. Macromolecules 33:8344–8353CrossRef Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites 1. Structural analysis. Macromolecules 33:8344–8353CrossRef
148.
go back to reference Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30CrossRef Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30CrossRef
149.
go back to reference Chazeau L, Cavaillé JY, Perez J (2000) Plasticized PVC reinforced with cellulose whiskers. II. Plastic behaviour. J Polym Sci Part B: Polym Phys 38:383–392CrossRef Chazeau L, Cavaillé JY, Perez J (2000) Plasticized PVC reinforced with cellulose whiskers. II. Plastic behaviour. J Polym Sci Part B: Polym Phys 38:383–392CrossRef
150.
go back to reference Azizi Samir AS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef Azizi Samir AS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef
151.
go back to reference Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212CrossRef Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212CrossRef
152.
go back to reference Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27CrossRef Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27CrossRef
153.
go back to reference Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651CrossRef Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651CrossRef
154.
go back to reference Terech P, Chazeau L, Cavaille JY (1999) A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32:1872–1875CrossRef Terech P, Chazeau L, Cavaille JY (1999) A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32:1872–1875CrossRef
155.
go back to reference Samir MASA, Alloin F, Gorecki W, Sanchez J-Y, Dufresne A (2004) Nanocomposite polymer electrolytes based on poly (oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852CrossRef Samir MASA, Alloin F, Gorecki W, Sanchez J-Y, Dufresne A (2004) Nanocomposite polymer electrolytes based on poly (oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852CrossRef
156.
go back to reference Schroers M, Kokil A, Weder C (2004) Solid polymer electrolytes based on nanocomposites of ethylene oxide-epichlorohydrin copolymers and cellulose whiskers. J Appl Polym Sci 93:2883–2888CrossRef Schroers M, Kokil A, Weder C (2004) Solid polymer electrolytes based on nanocomposites of ethylene oxide-epichlorohydrin copolymers and cellulose whiskers. J Appl Polym Sci 93:2883–2888CrossRef
157.
go back to reference Dujardin E, Blaseby M, Mann S (2003) Synthesis of mesoporous silica by sol-gel mineralization of cellulose nanorod nematic suspensions. J Mater Chem 13:696–699CrossRef Dujardin E, Blaseby M, Mann S (2003) Synthesis of mesoporous silica by sol-gel mineralization of cellulose nanorod nematic suspensions. J Mater Chem 13:696–699CrossRef
158.
go back to reference Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811CrossRef Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811CrossRef
159.
go back to reference Roman M, Dong S, Hirani A, Lee YW (2009) Cellulose nanocrystals for drug delivery. In: Edgar KJ, Heinze T, Buchanan CM (eds) Polysaccharide materials: performance by design. ACS Symposium Series. American Chemical Society, Washington DC, pp 81–91 Roman M, Dong S, Hirani A, Lee YW (2009) Cellulose nanocrystals for drug delivery. In: Edgar KJ, Heinze T, Buchanan CM (eds) Polysaccharide materials: performance by design. ACS Symposium Series. American Chemical Society, Washington DC, pp 81–91
160.
go back to reference Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761CrossRef Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761CrossRef
161.
go back to reference Turbak AF, Synder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827 Turbak AF, Synder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827
162.
go back to reference Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294CrossRef Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294CrossRef
163.
go back to reference Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81:1109–1112CrossRef Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81:1109–1112CrossRef
164.
go back to reference Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107CrossRef Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107CrossRef
165.
go back to reference Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268CrossRef Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268CrossRef
166.
go back to reference Zhao H-P, Feng X-Q, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:073112/1-073112/2 Zhao H-P, Feng X-Q, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:073112/1-073112/2
167.
go back to reference Wagberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRef Wagberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRef
168.
go back to reference Werner O, Persson L, Nolte M, Fery A, Wagberg L (2008) Patterning of surfaces with nanosized cellulosic fibrils using microcontact printing and a lift-off technique. Soft Matter 4:1158–1160CrossRef Werner O, Persson L, Nolte M, Fery A, Wagberg L (2008) Patterning of surfaces with nanosized cellulosic fibrils using microcontact printing and a lift-off technique. Soft Matter 4:1158–1160CrossRef
169.
go back to reference Turbak AF, Snyder FW, Sandberg KR (1982) Suspensions containing microfibrillated cellulose EP19810108847 Turbak AF, Snyder FW, Sandberg KR (1982) Suspensions containing microfibrillated cellulose EP19810108847
170.
go back to reference Dinand E, Vignon MR (2001) Isolation and NMR characterization of a (4-O-methyl-D-glucurono)-D-xylan from sugar beet pulp. Carbohydr Res 330:285–288CrossRef Dinand E, Vignon MR (2001) Isolation and NMR characterization of a (4-O-methyl-D-glucurono)-D-xylan from sugar beet pulp. Carbohydr Res 330:285–288CrossRef
171.
go back to reference Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45CrossRef Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45CrossRef
172.
go back to reference Cavaille J-Y, Chanzy H, Fleury E, Sassi J-F (1997) Surface-modified cellulose microfibrils, method for making same, and use thereof as a filler in composite materials. US6117545 Cavaille J-Y, Chanzy H, Fleury E, Sassi J-F (1997) Surface-modified cellulose microfibrils, method for making same, and use thereof as a filler in composite materials. US6117545
173.
go back to reference Cash MJ, Chan AN, Conner HT, Cowan PJ, Gelman RA, Lusvardi KM, Thompson SA, Tise FP (2000) Derivatized microfibrillar polysaccharides, their formation and use in dispersions. US6602994 Cash MJ, Chan AN, Conner HT, Cowan PJ, Gelman RA, Lusvardi KM, Thompson SA, Tise FP (2000) Derivatized microfibrillar polysaccharides, their formation and use in dispersions. US6602994
174.
go back to reference Dong S, Sapieha S, Schreiber HP (1993) Mechanical properties of corona-modified cellulose/polyethylene composites. Polym Eng Sci 33:343–346CrossRef Dong S, Sapieha S, Schreiber HP (1993) Mechanical properties of corona-modified cellulose/polyethylene composites. Polym Eng Sci 33:343–346CrossRef
175.
go back to reference Agarwal M, Lvov Y, Varahramyan K (2006) Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17:5319–5325CrossRef Agarwal M, Lvov Y, Varahramyan K (2006) Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17:5319–5325CrossRef
Metadata
Title
Production and Characteristics of Cellulose from Different Sources
Authors
Thomas Heinze
Omar A. El Seoud
Andreas Koschella
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-73168-1_1

Premium Partners