Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 6/2021

13-02-2020 | Original Article

Production of bio-oil from coir pith via pyrolysis: kinetics, thermodynamics, and optimization using response surface methodology

Authors: Nabajit Dev Choudhury, Nilutpal Bhuyan, Neonjyoti Bordoloi, Nabajyoti Saikia, Rupam Kataki

Published in: Biomass Conversion and Biorefinery | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study evaluates the potentiality of coir pith, an agro-industry by-product, as a low-cost feed-stock for the production of bio-fuels and other value-added chemicals. Thermogravimetric analysis was done to evaluate kinetics, thermodynamic, and mechanistic models of coir pith pyrolysis process. Optimal pyrolysis condition was fixed by using response surface methodology (RSM) in combination with central composite design (CCD). Pyrolysis experiments were carried out by using a miniature fixed-bed reactor at the temperature range of 200–400 °C with the heating rates and nitrogen flow rate ranges of 20–40 °C/min and 70–200 ml/min, respectively. As suggested by the Design expert software, maximum yield of bio-oil (29.31%) can be obtained at temperature of 349.14 °C, heating rate of 21.58 °C/min, and nitrogen flow rate of 196.61 ml/min, which was very much similar to the experimental yield (29.02 ± 0.05%). The bio-oil obtained at this condition was characterized by elemental analysis and different spectroscopic and chromatographic techniques including 1H-NMR, FTIR, and GC-MS. The calorific value of bio-oil was found to be 28.38 MJ/kg. Characterization of bio-oil obtained at the optimum process condition indicates that produced bio-oil is a combination of aliphatic as well as aromatic hydrocarbons which can be represented by the empirical formula of CH1.80 N0.04 O0.35. This investigation also revealed that the kinetic and thermodynamic analyses can correctly predict the possible pyrolysis temperature range for coir pith pyrolysis. The results obtained from the present investigation therefore suggest the suitability of coir pith as a potential feedstock for the conversion of energy and value added chemicals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis 91(1):1–33CrossRef White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis 91(1):1–33CrossRef
2.
go back to reference Nagarajan R, Manickam TS, Lothandaraman GV, Ramasamy K, Palaniswamy GV (1985) Manurial value of coir pith. Madras Agric J (B) 72:533–535 Nagarajan R, Manickam TS, Lothandaraman GV, Ramasamy K, Palaniswamy GV (1985) Manurial value of coir pith. Madras Agric J (B) 72:533–535
3.
go back to reference Harathi PB, Radha R, Gayathri M (2016) Efficacy of Pleurotus Sajor Caju as an excellent potting medium for garden plants. Int J Pharm Bio Sci 7((1) (B)):103–107 Harathi PB, Radha R, Gayathri M (2016) Efficacy of Pleurotus Sajor Caju as an excellent potting medium for garden plants. Int J Pharm Bio Sci 7((1) (B)):103–107
4.
go back to reference Kunchikannan LKNV, Mande SP, Kishore VVN, Jain KL (2007) Coir pith: a potential agro residue for anaerobic digestion. Energy Source A, Recov Util Environ Effects 29:293–301 Kunchikannan LKNV, Mande SP, Kishore VVN, Jain KL (2007) Coir pith: a potential agro residue for anaerobic digestion. Energy Source A, Recov Util Environ Effects 29:293–301
5.
go back to reference Ross PR, Paramanandham J, Thenmozhil P, Abbiramy KS, Muthulingam M (2012) Determination of physico-chemical properties of coir pith in relation to particle size suitable for potting medium. IJEST 2(2):45–47 Ross PR, Paramanandham J, Thenmozhil P, Abbiramy KS, Muthulingam M (2012) Determination of physico-chemical properties of coir pith in relation to particle size suitable for potting medium. IJEST 2(2):45–47
7.
go back to reference Ramadhas AS, Jayaraj S, Muraleedharan C (2008) Dual fuel mode operation in diesel engines using renewable fuels: rubber seed oil and coir-pith producer gas. Renew Energy 33(9):2077–2083CrossRef Ramadhas AS, Jayaraj S, Muraleedharan C (2008) Dual fuel mode operation in diesel engines using renewable fuels: rubber seed oil and coir-pith producer gas. Renew Energy 33(9):2077–2083CrossRef
8.
go back to reference Sheeba KN, Babu JSC, Jaisankar S (2013) Steam gasification characteristics of coir pith in a circulating fluidized bed gasifier. Energy Source A, Recov Util Environ Effects 35:110–121 Sheeba KN, Babu JSC, Jaisankar S (2013) Steam gasification characteristics of coir pith in a circulating fluidized bed gasifier. Energy Source A, Recov Util Environ Effects 35:110–121
9.
go back to reference Ramadhas AS, Jayaraj S, Muraleedharan C (2006) Power generation using coir-pith and wood derived producer gas in diesel engines. Fuel Process Technol 87:849–853CrossRef Ramadhas AS, Jayaraj S, Muraleedharan C (2006) Power generation using coir-pith and wood derived producer gas in diesel engines. Fuel Process Technol 87:849–853CrossRef
10.
go back to reference Awasthi A, Dhyani V, Biswas B, Kumar J, Bhaskar T (2019) Production of phenolic compounds using waste coir pith: estimation of kinetic and thermodynamic parameters. Bioresour Technol 274:173–179CrossRef Awasthi A, Dhyani V, Biswas B, Kumar J, Bhaskar T (2019) Production of phenolic compounds using waste coir pith: estimation of kinetic and thermodynamic parameters. Bioresour Technol 274:173–179CrossRef
11.
go back to reference Kumar P, Rao R, Chand S, Kumar S, Wasewar KL, Yoo CK (2013) Adsorption of lead from aqueous solution onto coir-pith activated carbon. Desalin Water Treat 51:2529–2535CrossRef Kumar P, Rao R, Chand S, Kumar S, Wasewar KL, Yoo CK (2013) Adsorption of lead from aqueous solution onto coir-pith activated carbon. Desalin Water Treat 51:2529–2535CrossRef
12.
go back to reference Bach Q-V, Chen W-H (2017) Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state of art review. Bioresour Technol 246:88–100CrossRef Bach Q-V, Chen W-H (2017) Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state of art review. Bioresour Technol 246:88–100CrossRef
13.
go back to reference Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, Bridgwater AV (2018) Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew Sust Energ Rev 82:2705–2715CrossRef Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, Bridgwater AV (2018) Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew Sust Energ Rev 82:2705–2715CrossRef
14.
go back to reference Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19CrossRef Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19CrossRef
15.
go back to reference Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-art review. Prog. Energy Combust Sci 62:33–86CrossRef Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-art review. Prog. Energy Combust Sci 62:33–86CrossRef
16.
go back to reference Angın D, Tiryaki AE (2016) Application of response surface methodology and artificial neural network on pyrolysis of safflower seed press cake. Energy Source A, Recovery Util Environ Effects 38(8):1055–1061 Angın D, Tiryaki AE (2016) Application of response surface methodology and artificial neural network on pyrolysis of safflower seed press cake. Energy Source A, Recovery Util Environ Effects 38(8):1055–1061
17.
go back to reference Carrier M, Auret L, Bridgwater A, Knoetze JH (2016) Using apparent activation energy as a reactivity criterion for biomass pyrolysis. Energy Fuel 30:7834–7831CrossRef Carrier M, Auret L, Bridgwater A, Knoetze JH (2016) Using apparent activation energy as a reactivity criterion for biomass pyrolysis. Energy Fuel 30:7834–7831CrossRef
18.
go back to reference Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C 6:183–195CrossRef Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C 6:183–195CrossRef
19.
go back to reference Akahira T, Sunose T (1971) Method for determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol) 16:22–31 Akahira T, Sunose T (1971) Method for determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol) 16:22–31
20.
go back to reference Flynn JH, Wall LA (1966) General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A 70:487CrossRef Flynn JH, Wall LA (1966) General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A 70:487CrossRef
21.
go back to reference Miura K, Maki T (1998) A simple method for estimating f(E) and k0(E) in the distributed activation energy model. Energy Fuel 12:864–869CrossRef Miura K, Maki T (1998) A simple method for estimating f(E) and k0(E) in the distributed activation energy model. Energy Fuel 12:864–869CrossRef
22.
go back to reference Choudhury ND, Chutia RS, Bhaskar T, Kataki R (2014) Pyrolysis of jute dust: effect of reaction parameters and analysis of products. J Mater Cycles Waste 16(3):449–459CrossRef Choudhury ND, Chutia RS, Bhaskar T, Kataki R (2014) Pyrolysis of jute dust: effect of reaction parameters and analysis of products. J Mater Cycles Waste 16(3):449–459CrossRef
23.
go back to reference Chutia RS, Kataki R, Bhaskar T (2013) Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Bioresour Technol 139:66–72CrossRef Chutia RS, Kataki R, Bhaskar T (2013) Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Bioresour Technol 139:66–72CrossRef
24.
go back to reference Chutia RS, Kataki R, Bhaskar T (2014) Characterization of liquid and solid product from pyrolysis of Pongamia glabra deoiled cake. Bioresour Technol 165:336–342CrossRef Chutia RS, Kataki R, Bhaskar T (2014) Characterization of liquid and solid product from pyrolysis of Pongamia glabra deoiled cake. Bioresour Technol 165:336–342CrossRef
25.
go back to reference Saikia R, Baruah B, Kalita D, Pant KK, Gogoi N, Kataki R (2018) Pyrolysis and kinetic analyses of a perennial grass (Saccharum ravannae L.) from north-east India: optimization through response surface methodology and product characterization. Bioresour Technol 253:304–314CrossRef Saikia R, Baruah B, Kalita D, Pant KK, Gogoi N, Kataki R (2018) Pyrolysis and kinetic analyses of a perennial grass (Saccharum ravannae L.) from north-east India: optimization through response surface methodology and product characterization. Bioresour Technol 253:304–314CrossRef
26.
go back to reference Mehmood MA, Ye G, Luo H, Liu C, Malik S, Afzal I, Xu J, Ahmad MS (2017) Pyrolysis and kinetic analyses of camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour Technol 228:18–24CrossRef Mehmood MA, Ye G, Luo H, Liu C, Malik S, Afzal I, Xu J, Ahmad MS (2017) Pyrolysis and kinetic analyses of camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour Technol 228:18–24CrossRef
27.
go back to reference Akhtar J, Amin NAS (2012) A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sust Energ Rev 16:5101–5109CrossRef Akhtar J, Amin NAS (2012) A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sust Energ Rev 16:5101–5109CrossRef
28.
go back to reference Braga RM, Melo DM, Aquino FM, Freitas JC, Melo MA, Barros JM, Fontes MS (2014) Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J Therm Anal Calorim 115(2):1915–1920CrossRef Braga RM, Melo DM, Aquino FM, Freitas JC, Melo MA, Barros JM, Fontes MS (2014) Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J Therm Anal Calorim 115(2):1915–1920CrossRef
29.
go back to reference Ahmad MS, Mehmood MA, Taqvi ST, Elkamel A, Liu CG, Xu J, Rahimuddin SA, Gull M (2017) Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential. Bioresour Technol 245:491–501CrossRef Ahmad MS, Mehmood MA, Taqvi ST, Elkamel A, Liu CG, Xu J, Rahimuddin SA, Gull M (2017) Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential. Bioresour Technol 245:491–501CrossRef
30.
go back to reference Gogoi M, Konwar K, Bhuyan N, Borah RC, Kalita AC, Nath HP, Saikia N (2018) Assessments of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry. Bioresour Technol Rep 4:40–49CrossRef Gogoi M, Konwar K, Bhuyan N, Borah RC, Kalita AC, Nath HP, Saikia N (2018) Assessments of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry. Bioresour Technol Rep 4:40–49CrossRef
31.
go back to reference Ozsin G, Putun AE (2018) Co-pyrolytic behaviors of biomass and polystyrene: kinetics, thermodynamics and evolved gas analysis, Korean J. Chem Eng 35:428–437 Ozsin G, Putun AE (2018) Co-pyrolytic behaviors of biomass and polystyrene: kinetics, thermodynamics and evolved gas analysis, Korean J. Chem Eng 35:428–437
32.
go back to reference Afzal I, Ahmad MS, Malik S, Ibrahim M, Al Ayed OS, Qadir G, Al Doghaither H, Gull M (2018) Thermodynamics and kinetics parameters of Eichhornia crassipes biomass for bioenergy. Protein Pept Lett 25:1–8CrossRef Afzal I, Ahmad MS, Malik S, Ibrahim M, Al Ayed OS, Qadir G, Al Doghaither H, Gull M (2018) Thermodynamics and kinetics parameters of Eichhornia crassipes biomass for bioenergy. Protein Pept Lett 25:1–8CrossRef
33.
go back to reference Xu Y, Chen B (2013) Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol 146:485–493CrossRef Xu Y, Chen B (2013) Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol 146:485–493CrossRef
34.
go back to reference Onay O (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed bed reactor. Fuel Process Technol 88:523–531CrossRef Onay O (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed bed reactor. Fuel Process Technol 88:523–531CrossRef
35.
go back to reference Bordoloi N, Narzari R, Chutia RS, Bhaskar T, Kataki R (2015) Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresour Technol 178:83–89CrossRef Bordoloi N, Narzari R, Chutia RS, Bhaskar T, Kataki R (2015) Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresour Technol 178:83–89CrossRef
36.
go back to reference Lu Q, Yang XL, Zhu XF (2008) Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J Anal Appl Pyrolysis 82:191–198CrossRef Lu Q, Yang XL, Zhu XF (2008) Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J Anal Appl Pyrolysis 82:191–198CrossRef
37.
go back to reference Das P, Sreelatha T, Ganesh A (2004) Bio-oil from pyrolysis of cashew nut shell-chracterization and related properties. Biomass Bioenergy 27:265–275CrossRef Das P, Sreelatha T, Ganesh A (2004) Bio-oil from pyrolysis of cashew nut shell-chracterization and related properties. Biomass Bioenergy 27:265–275CrossRef
38.
go back to reference Demiral I, Ayan EA (2011) Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the product. Bioresour Technol 102:3946–3951CrossRef Demiral I, Ayan EA (2011) Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the product. Bioresour Technol 102:3946–3951CrossRef
Metadata
Title
Production of bio-oil from coir pith via pyrolysis: kinetics, thermodynamics, and optimization using response surface methodology
Authors
Nabajit Dev Choudhury
Nilutpal Bhuyan
Neonjyoti Bordoloi
Nabajyoti Saikia
Rupam Kataki
Publication date
13-02-2020
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 6/2021
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-00630-3

Other articles of this Issue 6/2021

Biomass Conversion and Biorefinery 6/2021 Go to the issue