Skip to main content
Top
Published in: Metallurgist 1-2/2023

26-05-2023

Promising Titanium Alloys for Cold-Worked Pipe Manufacture

Authors: D. A. Pumpyanskiy, A. G. Illarionov, F. V. Vodolazskiy, Y. I. Kosmatskiy, A. A. Popov

Published in: Metallurgist | Issue 1-2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Data are analyzed for chemical composition, preparation and processing methods, and fields of application for titanium pseudo-α- (Ti31, Ti75, CT20, TA15, Grade 9) and (α + β)-martensitic alloys (Grade9M, Grade23, Grade23M, VST3331, VT14, VT23) developed within Russia and abroad used for cold-deformed pipe manufacture. Characteristic alloying features are evaluated and production operation sequences used for different alloys in the manufacture of cold-rolled pipes are provided. Available experimental data about the effect of temperature-rate parameters of tensile and compressive deformation over a wide temperature range on maximum deformation forces of titanium “pipe” alloys or their analogues are considered. The influence of alloying, degree and rate of cold deformation on the change in the strength and ductility properties of these alloys is analyzed. Based on available data, the temperature range for annealing cold-rolled pipes is determined for the alloys in question, which provides a good combination of strength and ductility properties. Data are presented for the structure formed in different stages of pipe production, on the guaranteed set of properties, areas of their use, and development trends.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Banerjee and J. C. Williams, “Perspectives on titanium science and technology,” Acta Materialia, 61, No. 3, 844–879 (2013).CrossRef D. Banerjee and J. C. Williams, “Perspectives on titanium science and technology,” Acta Materialia, 61, No. 3, 844–879 (2013).CrossRef
2.
go back to reference B. A, Kolachev , V. A, Elagin, and V. I. Ivanov, Materials Science and Heat Treatment of Nonferrous Metals and Alloys [in Russian], MISiS, Moscow (2005). B. A, Kolachev , V. A, Elagin, and V. I. Ivanov, Materials Science and Heat Treatment of Nonferrous Metals and Alloys [in Russian], MISiS, Moscow (2005).
3.
go back to reference V. K. Aleksandrov, N. F. Anoshkin, A. F. Belov, et al., Titanium Alloy Semifinished Products [in Russian], ONTI VILS, Moscow (1996). V. K. Aleksandrov, N. F. Anoshkin, A. F. Belov, et al., Titanium Alloy Semifinished Products [in Russian], ONTI VILS, Moscow (1996).
4.
go back to reference V. V. Tetyukhin and V. G. Smirnov, “New deformable titanium alloy for offshore oil recovery pipes,” Titan, No. 1(9), 37–40 (1996). V. V. Tetyukhin and V. G. Smirnov, “New deformable titanium alloy for offshore oil recovery pipes,” Titan, No. 1(9), 37–40 (1996).
5.
go back to reference V. V. Tetyukhin, I. V. Levin, and V. G. Smirnov, “New titanium alloy for flying equipment hydrogas system pipelines,” in: Proc. 1st Russian Conf. “Pipes Russia-2004” (Ekaterinburg 10–12 March 2004) [in Russian], UGTUUPI, Ekaterinburg (2004), pp. 412–415. V. V. Tetyukhin, I. V. Levin, and V. G. Smirnov, “New titanium alloy for flying equipment hydrogas system pipelines,” in: Proc. 1st Russian Conf. “Pipes Russia-2004” (Ekaterinburg 10–12 March 2004) [in Russian], UGTUUPI, Ekaterinburg (2004), pp. 412–415.
6.
go back to reference Y. Zhao, G. Yang, and L. Zhou, “New titanium alloy designed and developed by NIN,” in: N. Ninomi, S. Akiyama, M. Ikeda, et al. (editors), Ti-2007 Sci. and Techn., The Japan Institute of Metals (2007), pp. 809–812. Y. Zhao, G. Yang, and L. Zhou, “New titanium alloy designed and developed by NIN,” in: N. Ninomi, S. Akiyama, M. Ikeda, et al. (editors), Ti-2007 Sci. and Techn., The Japan Institute of Metals (2007), pp. 809–812.
7.
go back to reference Y. Zhao, “The new main titanium alloys used for shipbuilding developed in China and their applications,” Mater. China, 33, No. 7, 398–404 (2014). Y. Zhao, “The new main titanium alloys used for shipbuilding developed in China and their applications,” Mater. China, 33, No. 7, 398–404 (2014).
8.
go back to reference J. Sun , X. Meng, C. Chen, and Y. Liu, “Research, application and development of shipbuilding titanium alloy in China,” Acta Metallurgical Sinica, 38, No. 9, 33–36 (2002). J. Sun , X. Meng, C. Chen, and Y. Liu, “Research, application and development of shipbuilding titanium alloy in China,” Acta Metallurgical Sinica, 38, No. 9, 33–36 (2002).
9.
go back to reference Z. Li, Q. Wu, W. Wang, et al., “Marine titanium alloy and the manufacturing method,” China. ZL90108742, 4, 05–13 (1992). Z. Li, Q. Wu, W. Wang, et al., “Marine titanium alloy and the manufacturing method,” China. ZL90108742, 4, 05–13 (1992).
10.
go back to reference G. Yang and X. Cai, “A near a titanium alloy used at ultralow temperature and the processing method,” China. ZL03105962, 7, 05–14 (2003).. G. Yang and X. Cai, “A near a titanium alloy used at ultralow temperature and the processing method,” China. ZL03105962, 7, 05–14 (2003)..
11.
go back to reference V. V. Tetyukhin and V. G. Smirnov, “New wrought titanium alloys for impact-exposed pipelines,” Stainless Steel World, 60–63 September (1996). V. V. Tetyukhin and V. G. Smirnov, “New wrought titanium alloys for impact-exposed pipelines,” Stainless Steel World, 60–63 September (1996).
12.
go back to reference V. V. Tetyukhin, I. V. Levin, and V. G. Smirnov, RF Patent 2203974, MPК C22C14/00. Alloy Based on Titanium, No. 200111 2580/24; Claim 07.05.2002; Publ. 10.05.2003, Bull. No. 13. V. V. Tetyukhin, I. V. Levin, and V. G. Smirnov, RF Patent 2203974, MPК C22C14/00. Alloy Based on Titanium, No. 200111 2580/24; Claim 07.05.2002; Publ. 10.05.2003, Bull. No. 13.
13.
go back to reference I. Yu. Pyshmintsev, Ya. I. Kosmatskii, E. A. Filyaeva, et al, RF Patent 2661125, MPК C22F1/18, Method for Preparing Seamless Cold-Deformed Pipes of Titanium Alloy Type Ti–3Al–2.5V, No. 2017116114; Claim 10.05.2017; Publ. 11.07.2018, Bull. No. 20. I. Yu. Pyshmintsev, Ya. I. Kosmatskii, E. A. Filyaeva, et al, RF Patent 2661125, MPК C22F1/18, Method for Preparing Seamless Cold-Deformed Pipes of Titanium Alloy Type Ti–3Al–2.5V, No. 2017116114; Claim 10.05.2017; Publ. 11.07.2018, Bull. No. 20.
14.
go back to reference X. Shang, X. Tong, L. Wang, Z. Xu, N. Li, H. Feng, and X. Cheng, “Microstructure and mechanical properties of TA15 titanium alloy 8 mm tube,” in: Ti 2011 – Proc. of the 12th World Conf. on Titanium, Sci. Press Beijing, 1, 831–833 (2012). X. Shang, X. Tong, L. Wang, Z. Xu, N. Li, H. Feng, and X. Cheng, “Microstructure and mechanical properties of TA15 titanium alloy 8 mm tube,” in: Ti 2011 – Proc. of the 12th World Conf. on Titanium, Sci. Press Beijing, 1, 831–833 (2012).
15.
go back to reference TU 14-3-1953–94. Seamless Pipes Cold Worked from Alloy VT-14T, VNITI, Dnepropetrovsk (1994). TU 14-3-1953–94. Seamless Pipes Cold Worked from Alloy VT-14T, VNITI, Dnepropetrovsk (1994).
16.
go back to reference TU 14-3-1343–85. Seamless Pipes Cold Worked from Alloy Grade VT-23, VNITI, Dnepropetrovsk (1985). TU 14-3-1343–85. Seamless Pipes Cold Worked from Alloy Grade VT-23, VNITI, Dnepropetrovsk (1985).
17.
go back to reference V. G. Smirnov, A. V. Poludin, E. A. Beloborodova, V. N. Sedinkin, and B. G. Krokhin, RF Patent 2463376 MPК C22F1/18. Method for Preparing Cold-Deformed Pipes of Two-Phase Alloys Based on Titanium, 2010124013/02; Claim. 11.06.2010, Publ. 10.10.2012, Bull. No. 28. V. G. Smirnov, A. V. Poludin, E. A. Beloborodova, V. N. Sedinkin, and B. G. Krokhin, RF Patent 2463376 MPК C22F1/18. Method for Preparing Cold-Deformed Pipes of Two-Phase Alloys Based on Titanium, 2010124013/02; Claim. 11.06.2010, Publ. 10.10.2012, Bull. No. 28.
18.
go back to reference V. V. Tetyukhin, V. G. Smirnov, N. P. Karpenko, and A. V. Saf’yanov, “Titanium alloy pipe production for geological exploration and oil recovery on land and the marine shelf,” Titan, No. 1, 41–44 (1996). V. V. Tetyukhin, V. G. Smirnov, N. P. Karpenko, and A. V. Saf’yanov, “Titanium alloy pipe production for geological exploration and oil recovery on land and the marine shelf,” Titan, No. 1, 41–44 (1996).
19.
go back to reference S. G. Glazunov and V. N. Moiseev, Structural Titanium Alloys [in Russian], Metallurgiya, Moscow (1974). S. G. Glazunov and V. N. Moiseev, Structural Titanium Alloys [in Russian], Metallurgiya, Moscow (1974).
20.
go back to reference J. Yang, G. Wang, T. Zhao, Y. Li, and Q. Liu, “Study on the experiment and simulation of titanium alloy bellows via currentassisted forming technology,” JOM, 70, 1118–1123 (2018).CrossRef J. Yang, G. Wang, T. Zhao, Y. Li, and Q. Liu, “Study on the experiment and simulation of titanium alloy bellows via currentassisted forming technology,” JOM, 70, 1118–1123 (2018).CrossRef
21.
go back to reference J. Lua, L. Dong, Y. Liu, Y. Fu, W. Zhang, Y. Du, Y. Zhang, and Y. Zhao, “Simultaneously enhancing the strength and ductility in titanium matrix composites via discontinuous network structure,” Composites Part A, 136. Art. 105971 (2020). J. Lua, L. Dong, Y. Liu, Y. Fu, W. Zhang, Y. Du, Y. Zhang, and Y. Zhao, “Simultaneously enhancing the strength and ductility in titanium matrix composites via discontinuous network structure,” Composites Part A, 136. Art. 105971 (2020).
22.
go back to reference Y. Du, Z. Y. Wang, W. Liu, D. Guo, Y. Qi and Y. Lu , “Effect of processing parameters on microstructure and mechanical properties of CT20 alloy tube,” in: Ti 2011 – Proc. of the 12th World Conf. on Titanium, Sci. Press Beijing, 2, 1058–1060 (2012). Y. Du, Z. Y. Wang, W. Liu, D. Guo, Y. Qi and Y. Lu , “Effect of processing parameters on microstructure and mechanical properties of CT20 alloy tube,” in: Ti 2011 – Proc. of the 12th World Conf. on Titanium, Sci. Press Beijing, 2, 1058–1060 (2012).
23.
go back to reference E. W. Collings, R. Boyer, and G. Welsch, Titanium Alloys: Materials Properties. Handbook, ASM Intern.: Materials Park, Ohio (1994). E. W. Collings, R. Boyer, and G. Welsch, Titanium Alloys: Materials Properties. Handbook, ASM Intern.: Materials Park, Ohio (1994).
24.
go back to reference V. V. Tetyukhin, I. V. Levin, and A. V. Volkov, “VSMPO-AVISMA corporation titanium alloys,” in: Proc. 1st Russ. Conf. for Forging and Stamping Production “Kuznetsy Urala-2005” (Salda 16-18.09.2005) [in Russian], UGTU-UPI Ekaterinburg (2005), pp. 412–417. V. V. Tetyukhin, I. V. Levin, and A. V. Volkov, “VSMPO-AVISMA corporation titanium alloys,” in: Proc. 1st Russ. Conf. for Forging and Stamping Production “Kuznetsy Urala-2005” (Salda 16-18.09.2005) [in Russian], UGTU-UPI Ekaterinburg (2005), pp. 412–417.
25.
go back to reference A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties [in Russian], Sprav. M.: VILS (2009) A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties [in Russian], Sprav. M.: VILS (2009)
26.
go back to reference GOST 19807–91. Titanium and Deformable Titanium Alloys [in Russian], Grades. M, Izd. Standartov, Moscow (1992). GOST 19807–91. Titanium and Deformable Titanium Alloys [in Russian], Grades. M, Izd. Standartov, Moscow (1992).
27.
go back to reference B. A. Kolachev, Yu. B. Egorova, and S. B. Belova, “Relation between the temperature of the (α + β) − β transformation of commercial titanium alloys and their chemical composition,” Metal Science and Heat Treatment, 50, No. 7/8, 367–372 (2008).CrossRef B. A. Kolachev, Yu. B. Egorova, and S. B. Belova, “Relation between the temperature of the (α + β) − β transformation of commercial titanium alloys and their chemical composition,” Metal Science and Heat Treatment, 50, No. 7/8, 367–372 (2008).CrossRef
28.
go back to reference V. V. Tetyukhin, V. G. Smirnov, A. A. Fyodorov, and A. V. Safianov, “New titanium alloy development and tube manufacture for offshore oil and gas production,” Titanium 99 Sci. and Techn., 2, 1119–1124 (1999). V. V. Tetyukhin, V. G. Smirnov, A. A. Fyodorov, and A. V. Safianov, “New titanium alloy development and tube manufacture for offshore oil and gas production,” Titanium 99 Sci. and Techn., 2, 1119–1124 (1999).
29.
go back to reference B. Zhao, Y. Zhao, Y. Yang, D. Guo, H. Su, and J. Wu, “Effect of roll processing rate and heat treatment on microstructure and mechanical properties of Ti75 alloy tube,” in: Ti 2011 – Proc. of the 12th World Conf. on Titanium, Sci. Press Beijing, 1, 314–317 (2012). B. Zhao, Y. Zhao, Y. Yang, D. Guo, H. Su, and J. Wu, “Effect of roll processing rate and heat treatment on microstructure and mechanical properties of Ti75 alloy tube,” in: Ti 2011 – Proc. of the 12th World Conf. on Titanium, Sci. Press Beijing, 1, 314–317 (2012).
30.
go back to reference V. G. Smirnov, B. G. Krokhin, and V. S. Kalinin, “Assimilation of production for high quality pipe billets (TREX) of titanium alloys for aerospace systems,” Titan, No. 1, 36-39 (2003). V. G. Smirnov, B. G. Krokhin, and V. S. Kalinin, “Assimilation of production for high quality pipe billets (TREX) of titanium alloys for aerospace systems,” Titan, No. 1, 36-39 (2003).
31.
go back to reference E. A. Filaeva and YYa, I, Kosmatskii, “Production features for preparing titanium alloy pipes,” Vestn. Yuzhno-Ural. Gos. Univ., Sr. Metallurgiya, 17, No. 3, 70-76 (2017). E. A. Filaeva and YYa, I, Kosmatskii, “Production features for preparing titanium alloy pipes,” Vestn. Yuzhno-Ural. Gos. Univ., Sr. Metallurgiya, 17, No. 3, 70-76 (2017).
32.
go back to reference V. V. Tetyukhin, I. V. Levin, and V. G. Smirnov, “Pipe manufacture in OAO VSMPO, achievements and prospects,” in: Proc. 1st Russian Conf. “Pipes Russia-2004” (Ekaterinburg 10–12 March 2004) [in Russian], UGTU-UPI, Ekaterinburg (2004), pp. 3–35. V. V. Tetyukhin, I. V. Levin, and V. G. Smirnov, “Pipe manufacture in OAO VSMPO, achievements and prospects,” in: Proc. 1st Russian Conf. “Pipes Russia-2004” (Ekaterinburg 10–12 March 2004) [in Russian], UGTU-UPI, Ekaterinburg (2004), pp. 3–35.
33.
go back to reference P. I. Polukhin, G. Ya. Gun, and A. M. Galkin, Metal and Alloy Plastic Deformation Resistance, Reference [in Russian], Metallurgiya, Moscow, (1983). P. I. Polukhin, G. Ya. Gun, and A. M. Galkin, Metal and Alloy Plastic Deformation Resistance, Reference [in Russian], Metallurgiya, Moscow, (1983).
34.
go back to reference A. G. Illarionov, Ya. I. Kosmatskii, E. A. Filyaeva, F. V. Vodolazskii, and N. A. Barannikova, “Experimental determination of temperature parameters for evaluating the possibility of preparing hot-extruded pipes of alloy Ti–3Al–2.5V,” Metallurg, No. 9, 83–87 (2016). A. G. Illarionov, Ya. I. Kosmatskii, E. A. Filyaeva, F. V. Vodolazskii, and N. A. Barannikova, “Experimental determination of temperature parameters for evaluating the possibility of preparing hot-extruded pipes of alloy Ti–3Al–2.5V,” Metallurg, No. 9, 83–87 (2016).
35.
go back to reference Ya. I. Kosmatskii, N. V. Fokin, E. A. Filyaeva, and B. V. Barichko, “Study of the deformation capacity of titanium alloy Ti–3Al–2.5V and evaluation of the possibility of preparing it from hot-extruded pipes,” Titan, No. 2, 18–22 (2016). Ya. I. Kosmatskii, N. V. Fokin, E. A. Filyaeva, and B. V. Barichko, “Study of the deformation capacity of titanium alloy Ti–3Al–2.5V and evaluation of the possibility of preparing it from hot-extruded pipes,” Titan, No. 2, 18–22 (2016).
36.
go back to reference H. Su, Y. Yang, D. Goo, J. Wu, H. Zhao, B. Zhao, and Y. Luo, “Flow stress behavior and microstructural evolution of cast TA24 titanium alloy during hot deformation,” in: Ti 2011 – Proc. of the 12th World Conf. on Titanium, Sci. Press Beijing, 2, 1119–1123 (2012). H. Su, Y. Yang, D. Goo, J. Wu, H. Zhao, B. Zhao, and Y. Luo, “Flow stress behavior and microstructural evolution of cast TA24 titanium alloy during hot deformation,” in: Ti 2011 – Proc. of the 12th World Conf. on Titanium, Sci. Press Beijing, 2, 1119–1123 (2012).
37.
go back to reference A. G. Illarionov and A. A. Popov, Titanium Alloy Production and Operating Properties [in Russian], Izd. UrFU, Ekaterinburg (2014). A. G. Illarionov and A. A. Popov, Titanium Alloy Production and Operating Properties [in Russian], Izd. UrFU, Ekaterinburg (2014).
38.
go back to reference J. Xi, C. Dong, D. Luo, L. Nan, and J. Qu .Yang, “Effect of heat treatment on microstructure and properties of Ti–3Al–2,5V titanium alloy tubes,” in: Ti 2011 – Proc. of the 12th World Conf. on Titanium, Sci. Press Beijing, 2, 1079–1082 (2012). J. Xi, C. Dong, D. Luo, L. Nan, and J. Qu .Yang, “Effect of heat treatment on microstructure and properties of Ti–3Al–2,5V titanium alloy tubes,” in: Ti 2011 – Proc. of the 12th World Conf. on Titanium, Sci. Press Beijing, 2, 1079–1082 (2012).
39.
go back to reference Ya. I. Kosmatskii, B. V. Barichko, E. A. Filyaeva, and K. Yu. Yakovleva, “Evaluation of the effect of degree of cold deformation and heat treatment on formation and change in mechanical properties of titanium alloy Ti–3Al–2.5V,” Titan, No. 4, 39–44 (2016). Ya. I. Kosmatskii, B. V. Barichko, E. A. Filyaeva, and K. Yu. Yakovleva, “Evaluation of the effect of degree of cold deformation and heat treatment on formation and change in mechanical properties of titanium alloy Ti–3Al–2.5V,” Titan, No. 4, 39–44 (2016).
40.
go back to reference Ya. I. Kosmatskii, K. Yu. Yakovleva, E. A. Gornostaeva, A. G. Illarionov, F. V. Vodolazskii, and N. A. Barannikova, “Effect of cold plastic deformation on structure and mechanical properties of high-strength titanium ally VT14,” Titan, No. 3/4, 67–74 (2020). Ya. I. Kosmatskii, K. Yu. Yakovleva, E. A. Gornostaeva, A. G. Illarionov, F. V. Vodolazskii, and N. A. Barannikova, “Effect of cold plastic deformation on structure and mechanical properties of high-strength titanium ally VT14,” Titan, No. 3/4, 67–74 (2020).
41.
go back to reference W. Liu, T. Liu, G. Yang, F. Wang, Y. Lu, X. Mao, Y. Du, and Z. Xi, “Correlation between processing and mechanical properties of CT20 cryogenic titanium alloy tubes,” Titanium Industry Progress, 26, No. 6, 16 (2009). W. Liu, T. Liu, G. Yang, F. Wang, Y. Lu, X. Mao, Y. Du, and Z. Xi, “Correlation between processing and mechanical properties of CT20 cryogenic titanium alloy tubes,” Titanium Industry Progress, 26, No. 6, 16 (2009).
42.
go back to reference C. E. Forney and S. E. Meredith, Ti–3Al–2.5V Seamless Tubing Engineering Guide, Sandvik Special Metals Corp., Washington (1990). C. E. Forney and S. E. Meredith, Ti–3Al–2.5V Seamless Tubing Engineering Guide, Sandvik Special Metals Corp., Washington (1990).
43.
go back to reference F. V. Vodolazskiy, S. M. Illarionova, and A. G. Illarionov, “Influence of structure and phase composition on physical and mechanical properties of hot-extruded tubes of Ti–3Al–2.5V alloy,” Program of The International Conference on Industrial Engineering (ICIE 2022), Russia, Sochi. May 16–20. 2022. http:// icie-rus.org/programme2022-rus.html. F. V. Vodolazskiy, S. M. Illarionova, and A. G. Illarionov, “Influence of structure and phase composition on physical and mechanical properties of hot-extruded tubes of Ti–3Al–2.5V alloy,” Program of The International Conference on Industrial Engineering (ICIE 2022), Russia, Sochi. May 16–20. 2022. http:// icie-rus.org/programme2022-rus.html.
44.
go back to reference D. A. Pumpyanskii, Strengthening Treatment of High-Strength Titanium Alloys [in Russian], Diss. Cand. Tekhn, Sci., Ekaterinburg (2001). D. A. Pumpyanskii, Strengthening Treatment of High-Strength Titanium Alloys [in Russian], Diss. Cand. Tekhn, Sci., Ekaterinburg (2001).
45.
go back to reference I. V. Gorynin, A. S. Oryshchenko, V. P. Leonov, A. S. Kudryavtsev, and E. V. Chudakov, “Marine titanium alloys: creation, assimilation, prospects,” Titan, No. 3, 4–11 (2014). I. V. Gorynin, A. S. Oryshchenko, V. P. Leonov, A. S. Kudryavtsev, and E. V. Chudakov, “Marine titanium alloys: creation, assimilation, prospects,” Titan, No. 3, 4–11 (2014).
46.
go back to reference AMS 4943M Titanium Alloy, Hydraulic, Seamless Tubing 3.0Al – 2.5V Annealed SAE. 2021-12-13. AMS 4943M Titanium Alloy, Hydraulic, Seamless Tubing 3.0Al – 2.5V Annealed SAE. 2021-12-13.
47.
go back to reference AMS 4945 Titanium Alloy Tubing, Seamless, Hydraulic 3Al – 2.5V, Controlled Contractile Strain Ratio Cold Worked, Stress Relieved. SAE. 2020. AMS 4945 Titanium Alloy Tubing, Seamless, Hydraulic 3Al – 2.5V, Controlled Contractile Strain Ratio Cold Worked, Stress Relieved. SAE. 2020.
48.
go back to reference ASTM B861-19 Standard Specification for Titanium and Titanium Alloy Seamless Pipe (2019). ASTM B861-19 Standard Specification for Titanium and Titanium Alloy Seamless Pipe (2019).
49.
go back to reference V. V. Tetyukhin, I. V. Levin, and V. G. Smirnov, “New developments of materials and processes in pipe and extruded-profile production of OAO VSMPO,” Titan, No. 1, 32–36 (2003). V. V. Tetyukhin, I. V. Levin, and V. G. Smirnov, “New developments of materials and processes in pipe and extruded-profile production of OAO VSMPO,” Titan, No. 1, 32–36 (2003).
50.
go back to reference A. G. Illarionov, F. V. Vodolazskiy, N. A. Barannikova, Ya.., Kosmatskiy, and Y. V. Khudorozhkova, “Influence of phase composition on thermal expansion of Ti–0.4Al, Ti–2.2Al–2.5Zr and Ti–3Al2.5V alloys,” J. of Alloys and Compounds, 857, 158049 (2021). A. G. Illarionov, F. V. Vodolazskiy, N. A. Barannikova, Ya.., Kosmatskiy, and Y. V. Khudorozhkova, “Influence of phase composition on thermal expansion of Ti–0.4Al, Ti–2.2Al–2.5Zr and Ti–3Al2.5V alloys,” J. of Alloys and Compounds, 857, 158049 (2021).
51.
go back to reference F. V. Vodolazskiy, A. G. Illarionov, and M. A. Ryzhkov, “Evolution of phase composition and thermal expansion during heating of VT23 titanium alloy,” Mater. Sci. Forum., 1052 MSF, 147–153 (2022). F. V. Vodolazskiy, A. G. Illarionov, and M. A. Ryzhkov, “Evolution of phase composition and thermal expansion during heating of VT23 titanium alloy,” Mater. Sci. Forum., 1052 MSF, 147–153 (2022).
52.
go back to reference Ya. I. Kosmatskii, B. V. Barichko, N. V. Fokin, and V. D. Nikoloneko, “Use of Gleeble 3800 complex during development of hot extrusion and upsetting technology for pipe ends,” Mettallurg., No. 4, 36–41 (2021). Ya. I. Kosmatskii, B. V. Barichko, N. V. Fokin, and V. D. Nikoloneko, “Use of Gleeble 3800 complex during development of hot extrusion and upsetting technology for pipe ends,” Mettallurg., No. 4, 36–41 (2021).
53.
go back to reference F. V. Vodolazskii, A. G. Illarionov, Yu. N. Loginov, Ya. I. Kosmatskii, A. Yu. Postylyakov, “Comparison of the structure and properties of titanium alloy Ti–3% Al–2.5% V pipe with results of digitizing its extrusion process,” MiTOM, No. 8, 41–46 (2022). F. V. Vodolazskii, A. G. Illarionov, Yu. N. Loginov, Ya. I. Kosmatskii, A. Yu. Postylyakov, “Comparison of the structure and properties of titanium alloy Ti–3% Al–2.5% V pipe with results of digitizing its extrusion process,” MiTOM, No. 8, 41–46 (2022).
Metadata
Title
Promising Titanium Alloys for Cold-Worked Pipe Manufacture
Authors
D. A. Pumpyanskiy
A. G. Illarionov
F. V. Vodolazskiy
Y. I. Kosmatskiy
A. A. Popov
Publication date
26-05-2023
Publisher
Springer US
Published in
Metallurgist / Issue 1-2/2023
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-023-01486-4

Other articles of this Issue 1-2/2023

Metallurgist 1-2/2023 Go to the issue

Premium Partners