Skip to main content
Top

2018 | OriginalPaper | Chapter

20. Properties of 63Sn-37Pb and Sn-3.8Ag-0.7Cu Solders Reinforced with Single-Wall Carbon Nanotubes

Authors : K. Mohan Kumar, Vaidyanathan Kripesh, Andrew A. O. Tay

Published in: Nanopackaging

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solders are extensively used in electronics packages as mechanical and electrical interconnects because of their ease of processing and low cost. Solder interconnects for wafer-level chip-scale packages are subject to high stresses caused by the mismatch in coefficient of thermal expansion between the silicon chip and the organic substrate when the packages experience changes in temperature during assembly, testing, and field operation. With the relentless trend toward ever-decreasing solder joint pitches and sizes, these thermomechanical stresses will increase exponentially, and there is a need to enhance the strength of the current solder materials to withstand the increased stresses. This chapter describes a study on the usage of single-walled carbon nanotubes (SWCNTs) as a reinforcing material for the enhancement of the solder material properties for use in wafer-level chip-scale packages. The aim of this work is to fabricate CNT-reinforced nanocomposite solders; characterize their improved physical, thermal, electrical, mechanical, and wetting properties; and compare them to the original Sn-Pb and Sn-Ag-Cu solders.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Tummala RR (2001) Fundamentals of microsystems packaging. McGraw Hill, New York Tummala RR (2001) Fundamentals of microsystems packaging. McGraw Hill, New York
3.
go back to reference Yeth CC, Choi WJ, Tu KN (2002) Current-crowding-induced electromigration failure in flip chip solder joints. Appl Phys Lett 80:580CrossRef Yeth CC, Choi WJ, Tu KN (2002) Current-crowding-induced electromigration failure in flip chip solder joints. Appl Phys Lett 80:580CrossRef
4.
go back to reference Lau JH (1997) Flip chip technologies. McGraw Hill, New York Lau JH (1997) Flip chip technologies. McGraw Hill, New York
5.
go back to reference Stam FA, Davitt E (2001) Effects of thermomechanical cycling on lead and lead-free (SnPb and SnAgCu) surface mount solder joints. Microelectron Reliab 41:1815CrossRef Stam FA, Davitt E (2001) Effects of thermomechanical cycling on lead and lead-free (SnPb and SnAgCu) surface mount solder joints. Microelectron Reliab 41:1815CrossRef
6.
go back to reference Mavoori H, Jin S (1998) New, creep-resistant, low melting point solders with ultrafine oxide dispersions. J Electron Mater 27:1216CrossRef Mavoori H, Jin S (1998) New, creep-resistant, low melting point solders with ultrafine oxide dispersions. J Electron Mater 27:1216CrossRef
7.
go back to reference Reno RC, Panunto MJ (1997) A Mössbauer study of tin-based intermetallics formed during the manufacture of dispersion-strengthened composite solders. J Electron Mater 26:11CrossRef Reno RC, Panunto MJ (1997) A Mössbauer study of tin-based intermetallics formed during the manufacture of dispersion-strengthened composite solders. J Electron Mater 26:11CrossRef
8.
go back to reference Chen K-I, Lin K-L (2002) The microstructures and mechanical properties of the Sn-Zn-Ag-Al-Ga solder alloys—the effect of Ag. J Electron Mater 31:861CrossRef Chen K-I, Lin K-L (2002) The microstructures and mechanical properties of the Sn-Zn-Ag-Al-Ga solder alloys—the effect of Ag. J Electron Mater 31:861CrossRef
9.
go back to reference Nai SML, Wei J, Gupta M (2006) Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes. Mater Sci Eng A423(1–2):166–169CrossRef Nai SML, Wei J, Gupta M (2006) Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes. Mater Sci Eng A423(1–2):166–169CrossRef
10.
11.
go back to reference Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297–1300CrossRef Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297–1300CrossRef
12.
go back to reference Saether E, Frankland SJ, Pipes RB (2003) Transverse mechanical properties of single-walled carbon nanotube crystals. Part I: determination of elastic moduli. Compos Sci Technol 63:1543CrossRef Saether E, Frankland SJ, Pipes RB (2003) Transverse mechanical properties of single-walled carbon nanotube crystals. Part I: determination of elastic moduli. Compos Sci Technol 63:1543CrossRef
13.
go back to reference Despres JF, Daguerre E, Lafdi K (1995) Flexibility of graphene layers in carbon nanotubes. Carbon 33:87–92CrossRef Despres JF, Daguerre E, Lafdi K (1995) Flexibility of graphene layers in carbon nanotubes. Carbon 33:87–92CrossRef
14.
go back to reference Iijima S, Brabec C, Maiti A, Bernholc J (1996) Structural flexibility of carbon nanotubes. J Phys Chem 104:2089–2092CrossRef Iijima S, Brabec C, Maiti A, Bernholc J (1996) Structural flexibility of carbon nanotubes. J Phys Chem 104:2089–2092CrossRef
15.
go back to reference Dai H, Wong EW, Lieber CM (1996) Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272:523–526CrossRef Dai H, Wong EW, Lieber CM (1996) Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272:523–526CrossRef
16.
go back to reference Ebbesen TW, Lezec HJ, Hiura H, Benett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56CrossRef Ebbesen TW, Lezec HJ, Hiura H, Benett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56CrossRef
17.
go back to reference Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514CrossRef Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514CrossRef
19.
go back to reference Zhong R, Cong H, Hou P (2003) Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon 41:848CrossRef Zhong R, Cong H, Hou P (2003) Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon 41:848CrossRef
20.
go back to reference Dong S, Zhang X (1999) Mechanical properties of Cu-based composites reinforced by carbon nanotubes. Trans Nonferrous Meter Soc China 9:457 Dong S, Zhang X (1999) Mechanical properties of Cu-based composites reinforced by carbon nanotubes. Trans Nonferrous Meter Soc China 9:457
21.
go back to reference George R, Kashyap KT, Rahul R, Yamdagni S (2005) Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr Mater 53:1159–1163CrossRef George R, Kashyap KT, Rahul R, Yamdagni S (2005) Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr Mater 53:1159–1163CrossRef
22.
go back to reference Peigney E, Laurent C, Flahaut A, Rousset A (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26:677–683CrossRef Peigney E, Laurent C, Flahaut A, Rousset A (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26:677–683CrossRef
23.
go back to reference Xu CL, Wei BQ, Ma RZ, Liang J, Ma XK, Wu DH (1999) Fabrication of aluminum–carbon nanotube composites and their electrical properties. Carbon 37:855–858CrossRef Xu CL, Wei BQ, Ma RZ, Liang J, Ma XK, Wu DH (1999) Fabrication of aluminum–carbon nanotube composites and their electrical properties. Carbon 37:855–858CrossRef
24.
go back to reference Couchman PR, Ryan CK (1978) The Lindmann hypothesis and the size-dependence of melting temperature. Philos Mag A 37:327–329CrossRef Couchman PR, Ryan CK (1978) The Lindmann hypothesis and the size-dependence of melting temperature. Philos Mag A 37:327–329CrossRef
25.
go back to reference Upadhya K (1993) Proceedings of a symposium sponsored by the structural materials division of TMS annual meeting, Denver, p 22 Upadhya K (1993) Proceedings of a symposium sponsored by the structural materials division of TMS annual meeting, Denver, p 22
26.
go back to reference Wu WF, Lin YY, Young HT (2005) Quantitative reliability analysis of electronic packages in consideration of variability of model parameters, Proceedings of 7th electronics packaging technology conference, Singapore, EPTC2005, p 625 Wu WF, Lin YY, Young HT (2005) Quantitative reliability analysis of electronic packages in consideration of variability of model parameters, Proceedings of 7th electronics packaging technology conference, Singapore, EPTC2005, p 625
28.
go back to reference Kuo MC, Tsai CM, Huang JC, Chen M (2005) PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates. Mater Chem Phys 90:185–195CrossRef Kuo MC, Tsai CM, Huang JC, Chen M (2005) PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates. Mater Chem Phys 90:185–195CrossRef
29.
30.
go back to reference Ziman JM (1972) Principles of the theory of solids. Cambridge University Press, LondonCrossRef Ziman JM (1972) Principles of the theory of solids. Cambridge University Press, LondonCrossRef
31.
go back to reference Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 16(3):248–251 Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 16(3):248–251
32.
go back to reference Potschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863CrossRef Potschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863CrossRef
33.
go back to reference Loomans ME, Vaynman S, Ghosh G, Fine ME (1994) Investigation of multi-component lead-free solders. J Electron Mater 23:741CrossRef Loomans ME, Vaynman S, Ghosh G, Fine ME (1994) Investigation of multi-component lead-free solders. J Electron Mater 23:741CrossRef
34.
go back to reference Werner E (2006) A guide to lead-free solders physical metallurgy and reliability. Springer, London Werner E (2006) A guide to lead-free solders physical metallurgy and reliability. Springer, London
35.
go back to reference Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33(7):925–930CrossRef Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33(7):925–930CrossRef
36.
go back to reference Chen Z, Yaowu S, Xia Z, Yan Y (2003) Properties of lead-free solder SnAgCu containing minute amounts of rare earth. J Electron Mater 32:235CrossRef Chen Z, Yaowu S, Xia Z, Yan Y (2003) Properties of lead-free solder SnAgCu containing minute amounts of rare earth. J Electron Mater 32:235CrossRef
37.
go back to reference Gojny FW, Wichmann MHG, Fiedler B, Schulte K (2006) Compos Sci Technol 66:343–349CrossRef Gojny FW, Wichmann MHG, Fiedler B, Schulte K (2006) Compos Sci Technol 66:343–349CrossRef
38.
go back to reference Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39:1–23CrossRef Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39:1–23CrossRef
39.
go back to reference Lloyd DJ (1997) Processing of particle-reinforced metal matrix composites. In: Mallick PK (ed) Composite engineering handbook. Marcel Dekker, New York, pp 631–670 Lloyd DJ (1997) Processing of particle-reinforced metal matrix composites. In: Mallick PK (ed) Composite engineering handbook. Marcel Dekker, New York, pp 631–670
40.
go back to reference Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ (2002) Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl Phys Lett 81(27):5123–5125CrossRef Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ (2002) Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl Phys Lett 81(27):5123–5125CrossRef
41.
go back to reference Lloyd DJ, Lagace HP, McLeod AD (1990) Interfacial phenomena in metal matrix composites. Proceedings of ICCI-III. Elsevier, Cleveland, pp 359–376CrossRef Lloyd DJ, Lagace HP, McLeod AD (1990) Interfacial phenomena in metal matrix composites. Proceedings of ICCI-III. Elsevier, Cleveland, pp 359–376CrossRef
42.
go back to reference Ning J, Zhang J, Pan Y, Guo J (2003) Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube. Mater Sci Eng A 357:392CrossRef Ning J, Zhang J, Pan Y, Guo J (2003) Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube. Mater Sci Eng A 357:392CrossRef
Metadata
Title
Properties of 63Sn-37Pb and Sn-3.8Ag-0.7Cu Solders Reinforced with Single-Wall Carbon Nanotubes
Authors
K. Mohan Kumar
Vaidyanathan Kripesh
Andrew A. O. Tay
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-90362-0_20

Premium Partners