Skip to main content
Top
Published in: Journal on Multimodal User Interfaces 3/2020

Open Access 21-07-2020 | Survey

Psychophysical comparison of the auditory and tactile perception: a survey

Authors: Sebastian Merchel, M. Ercan Altinsoy

Published in: Journal on Multimodal User Interfaces | Issue 3/2020

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the psychophysical abilities and limitations of the auditory and vibrotactile modality will be discussed. A direct comparison reveals similarities and differences. The knowledge of those is the basis for the design of perceptually optimized auditory-tactile human–machine interfaces or multimodal music applications. Literature data and own results for psychophysical characteristics are summarized. An overview of the absolute perception thresholds of both modalities is given. The main factors which influence these thresholds are discussed: age, energy integration, masking and adaptation. Subsequently, the differential sensitivity (discrimination of intensity, frequency, temporal aspects and location) for suprathreshold signals is compared.
Notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

The perception of vibrations at the skin and sound are often coupled in real life, e.g., while playing an instrument or listening to music with low frequency content. In these cases, the physical stimuli which excite both modalities are usually highly correlated. If new multimodal systems are designed, sound and vibrations can be influenced separately. Just think of the auditory and vibrotactile feedback of a button on a touch screen, or vibrotactile feedback of electronic music instruments, or bimodal devices for guidance of blind persons. For example, the authors developed and optimized systems for multimodal reproduction of music [64, 65, 67]. To this end, a vibration actuator was coupled to a surface in contact with the listener, e.g., an electrodynamic shaker mounted in a backpack, integrated in clothing or attached below a seat or floor. Audio reproduction was implemented with conventional loudspeakers or headphones. To generate appropriate music-related vibrations from the audio signal various signal processing approaches were compared. It was found that it is beneficial to consider the perceptual capabilities and limitations of both modalities in this design process. Therefore, knowledge of the fundamental characteristics of the auditory and vibrotactile sensory modalities was necessary. Many similarities can be found regarding psycho-physical characteristics, although the anatomy and physiology of both modalities are quite different. A good overview of the basic structure and functionality of the human hearing organ as well as the histology and physiology of the mechanoreceptive system including the neural processing in the somatosensory and auditory areas of the brain can be found in [59, 86] and will not be described here.
The current survey aims to compare the sense of hearing and touch using data from psychophysical experiments. Special attention is given to the perception of vibrations in the frequency range where sound and vibration perception overlap: between a few Hertz and several hundred Hertz. The authors hope that this overview helps to design good auditory-tactile feedback that matches perceptually. This paper is based on the dissertation of the first author [63]. Reproduction is kindly permitted by the Shaker Verlag, Germany.
The perception of sound has been studied for several decades. The basic physical attributes of sound (e.g., intensity, frequency or location of a sound source) have been correlated to perceptual attributes like loudness, pitch or distance. Different effects like adaptation to loud signals or masking characterize the auditory system. In contrast to our hearing, vibrations can be perceived at different parts of the body. Most vibrotactile studies focus on vibrations transmitted via hand and finger. However, the principal mechanoreceptors in the skin are similar at different body sites. In the overlapping frequency range of auditory and vibrotactile perception, vibrations are likely to stimulate mainly the Meissner and Pacinian mechanoreceptors which can be found all over the body [86], however, with varying populations and surrounding tissue mechanics. Nevertheless, data from different body sites is used for a general comparison.
A common measurement unit for sound is the sound pressure level. \(L_{\mathrm {SPL}}\). It is defined as the logarithmic ratio of the effective value of the sound pressure p and has a reference value \(p_{0} = 20\, \upmu \hbox { Pa}\):
$$\begin{aligned} L_{\mathrm {SPL}} = 20 \log \frac{p}{p_{0}} \mathrm {dB}. \end{aligned}$$
A similar unit for measuring vibrations is the acceleration level \(L_{\mathrm {acc}}\). It is defined as the logarithmic ratio of the acceleration a and has a reference value \(a_{0} = 1 \upmu \hbox {m}/\hbox {s}^{2}\):
$$\begin{aligned} L_{\mathrm {acc}} = 20 \log \frac{a}{a_{0}} \mathrm {dB}. \end{aligned}$$
In contrast to sound pressure level, 0 dB acceleration level is not related to the perception threshold. Therefore, sensation level (the level above threshold) will be used to compare the auditory and vibrotactile modality directly. Please note that within this paper the term ‘vibrotactile’ will be sometimes abbreviated as ‘tactile’. However, the article will not discuss other types of tactile sensations (e.g., temperature).

2 Absolute sensitivity

A fundamental characteristic of a sensory modality is the absolute perception threshold. Minimum and maximum perceivable levels for auditory and tactile perception will be discussed in this section. Basic effects like energy integration, masking and adaptation will be compared.

2.1 Sensation area

Auditory
Sound can be heard between approximately 20 Hz and 20 kHz. Below 20 Hz the tonal sensation ceases, and below 10 Hz single cycles of the sound can be perceived [71]. The upper frequency limit depends strongly on the age of the subject. Figure 1 shows that the hearing is most sensitive to sound pressure between approximately 300 Hz and 7000 Hz. It becomes less sensitive for decreasing and increasing frequency. In addition, the figure shows estimates for the pain threshold and the annoyance threshold after Winckel [112]. The curves of equal subjective intensity (equal loudness contours) are plotted according to ISO 226:2003 [52]. They follow the threshold curve to some degree. It can be seen that they get closer toward lower frequencies. The auditory dynamic range is thus frequency dependent from 50 dB to more than 100 dB.
The hair cells in the cochlea can be regarded as the most sensitive mechanoreceptors of the human body. The minimum perceivable sound pressure causes only \(10^{-10}\) m displacement in the inner ear, which corresponds roughly to the diameter of a hydrogen atom [86].
Tactile
In comparison the vibrotactile sense is rather limited. Only frequencies up to approximately 1 kHz can be perceived via the mechanoreceptive system. Similar to the ear, the vibration sensitivity of the skin depends on frequency. Figure 2 shows the frequency dependent perception threshold on the thenar eminence adapted from Verrillo et al. [103]. It can be seen that the glabrous skin becomes more sensitive to the acceleration of its surface with decreasing frequency. Similar results were reported for various regions of the body [45]. It was found that the sensitivity depends on the distribution and density of the mechanoreceptors, with lower thresholds for areas with higher receptor density [56]. Hairy skin is approximately 10–20 dB less sensitive depending on frequency [101].
The curves of equal subjective intensity follow the threshold to some degree. Again a frequency dependence can be seen, with smaller dynamic ranges for frequencies above approximately 300 Hz. At frequencies below 200 Hz, vibrations more than 40–55 dB above threshold become very unpleasant or painful [70]. The dynamic range can thus be quantified between approximately 40–50 dB.
Similar curves of equal vibration intensity have been measured by the authors for seat vibrations using two different methods: magnitude estimation and intensity matching. Interestingly, the slight frequency dependence of the dynamic range could not be confirmed [66].
The growth of perceived intensity above threshold is another very important aspect when comparing the auditory and vibrotactile modality. Compared to audition, the increase in perceived magnitude is steeper with increasing level in the vibrotactile domain, particularly at low sensation levels. For a detailed discussion of this relevant topic, the reader is referred to [63] where a new perceptually motivated measurement was proposed to represent human vibration intensity perception: the perceived vibration magnitude M in vip, comparable to auditory loudness N in sone.

2.2 Age and gender

Auditory
The threshold of hearing rises naturally with increasing age. This effect is referred to as presbyacusis and involves primarily frequencies above 3000 Hz. Figure 3 presents data that depicts the progression of hearing loss with age [89]. The data is averaged over men and woman, however, it has been shown that presbyacusis starts more gradual in women but grows faster once started [8]. In addition, noise-induced hearing loss (sociocusis) is a common phenomenon today.
Tactile
Similar to hearing, age has a considerable influence on vibrotactile thresholds. The sensitivity for high frequencies decreases progressively with age [91, 102]. Figure 3 illustrates the shift of the vibrotactile detection threshold for four age groups [98]. At higher frequencies, where the Pacinian system is predominant, a strong loss of sensitivity can be observed with increasing age. No effect was found for low frequencies.
In general, no gender differences were found for vibrotactile thresholds between men and women [61, 99]. Only Gescheider reported that woman are slightly more sensitive to high-frequency vibrations at the thenar eminence a few days before menstruation [38].

2.3 Energy integration

An other important characteristic of the auditory and vibrotactile modality, which has an influence on the threshold, is the ability to integrate energy. This is often discussed using the relationship between the duration and the threshold (or intensity) of a stimulus.
Auditory
The auditory threshold of detection decreases with increasing duration up to a stimulus length of approximately 1 s. This holds true for various types of stimuli over a broad frequency range [27]. Figure 4 shows data from Plomp and Bouman [83] and Florentine [24] for a stimulus frequency of 250 Hz. The curves follow the prediction made by the theory of temporal summation, which was formulated by Zwislocki in 1960 [113].
Tactile
Temporal energy integration can also be found in the vibrotactile domain, but only in the Pacinian system [32, 33]. No temporal summation was found for low frequencies, e.g. at 25 Hz [36]. Data after Verrillo [95] are plotted for comparison in Fig. 4. Stimuli with a frequency of 250 Hz were delivered to the glabrous skin of the palm using a large contactor (2.9 cm\(^2\)). He measured a 3 dB reduction of threshold per doubling of duration up to a stimulus length of 300 ms, indicating a complete integration of energy. Similar curves were found at 100 Hz and 500 Hz, frequencies at which mainly the Pacinian corpuscles are responsive to vibration. The same trend was found in suprathreshold experiments [3]. Other experiments by the author with seat vibrations at 40 Hz, 80 Hz, 160 Hz and 320 Hz confirmed the above conclusions but are not plotted here for clarity [68]. The data agrees well with the curves found in the auditory domain in spite of fundamentally different biomechanical conditions of the tactile sense compared to hearing. It remains open if this suggests similar perceptual mechanisms or if it can be explained otherwise, e.g., by surrounding tissue mechanics.
Additional curves for smaller contactor sizes (0.05 cm\(^2\) and 0.02 cm\(^2\)) can be seen in Fig. 4 [95]. As the size of the stimulated area is reduced, the dependence of duration upon the threshold is accordingly reduced. Using smaller contact areas, more and more non-Pacinian receptors will be stimulated [86]. Consequently, the amount of temporal summation declines.
In addition, absolute vibrotactile sensitivity at higher frequencies depends strongly on the size of the stimulated area. It has been shown that for frequencies between 80 and 320 Hz (Pacinian channel) the threshold decreases with 3 dB per doubling of contact area at the thenar eminance of the hand [94, 96]. Similar results have been reported for the hairy skin at the forearm [97]. No effects were found for lower frequencies [36].
Until now, only a single stimuli has been examined. However, in every-day life, two or more simultaneous stimuli are not unusual. If subjects are asked to judge the combined intensity of two tones, the result is proportional to the overall energy if the frequencies lie within a critical band in audition. However, if frequency components outside the critical bandwidth are added, the perceived intensity grows much stronger and the sensation magnitudes of the individual components can be summed [20]. Interestingly, similar effects have been found in the vibrotactile domain. Evidence for energy integration within the Pacinian channel has been discussed above and addition of sensation magnitudes between mechano-receptive channels has been reported [60, 104]. It was therefore suggested that the Pacinian channel is analogous to a critical band in the auditory system [57].

2.4 Masking

If multiple stimuli are heard or felt in close temporal proximity, they might interfere. One such effect is the suppression of one stimulus by another, which is called masking.
Auditory
Early experiments used two sinusoids as masker and test signal to investigate masking ([109] as cited by [73]). However, when both signals were close together in frequency, beats occurred and complicated the results. To avoid this problem, later studies used narrow band noise as masker. The shifted threshold for detecting a test tone at various frequencies in the presence of a masker with fixed center frequency and amplitude was determined. This masked threshold is sometimes called masked audiogram or masking pattern. It is strongly correlated with the excitation pattern the masker generates on the basilar membrane [10]. An exemplary masking pattern is shown in Fig. 5 with data from [13]. For the plotted curve, a 90 Hz wide band of masking noise is centered at 410 Hz with 40 dB SPL. A narrow masking region can be seen. However, for higher sensation levels, which are not plotted here, the masking pattern spreads especially towards the high-frequency side.
In general, auditory masking patterns are dependent on masker frequency, duration and level. They show steep slopes towards lower frequencies and less steep slopes towards higher frequencies on a logarithmic frequency axis. However, towards low sensation levels or low frequencies, masking patterns are getting more and more symmetrical [13, 93], as illustrated in Fig. 5. Interestingly, low frequency maskers (e.g. at 150 Hz) seem to have their maximum effect slightly shifted towards higher frequencies [93] and their masking pattern broadens significantly [14, 15].
In the above studies, masker and test signal have been presented to the same ear or both ears diotically. However, even for dichotic conditions masking was found [16, 17]. Therefore, central processing must be involved in the masking process, since the masker is presented to one ear and the test signal to the other.
Even if the masker and the test signal are presented one after the other, masking effects have been reported. This is referred to as post-masking (forward masking) if the test signal comes slightly behind the masker, or pre-masking (backward masking) if the test signal precedes the masker as is illustrated in Fig. 6 using data from Elliott [16]. A 50 ms long white noise masker at 90 dB SPL was used to mask a 7 ms long test tone at 500 Hz. It can be seen that post-masking is active up to approximately 100 ms. Other studies reported slightly longer post-masking intervals, e.g. Jesteadt et al. [53] used tones from 125 to 4000 Hz and reported that more post-masking occurred at very low frequencies than at high frequencies. Pre-masking is believed to be much weaker. Some studies even showed, that pre-masking diminishes or almost disappears if subjects are highly trained [80].
Tactile
Similar to audition, the detectability of a vibration might be reduced by another one. Again, this effect depends on frequency, intensity and timing of both stimuli. As in audition, masking increases as a function of increasing masker intensity and decreasing frequency separation. However, there is good evidence that the different mechano-receptive channels do not mask each other [39, 57]. Vibrotactile masking patterns from Stamm et al. [90] and Gescheider et al. [39] are plotted in Fig. 5. Narrow band masking noise was simultaneously presented with sinusoidal test stimuli. Strong masking towards higher frequencies can be seen, which might be due to masking within the Pacinian channel. For decreasing frequencies lower than the masker, the threshold of the Pacinian channel might exceed the threshold of another tactile channel, e.g. RA1, which takes over and gradually reduces the masking effect [35]. In this sense, the overlapping vibrotactile channels could be regarded similar to overlapping auditory bands, however, with only few fixed filters. This would explain the strong asymmetry of vibrotactile masking patterns plotted here.
Thresholds might be elevated, even if two vibrations stimulate the body at different locations [37, 42]. This is referred to as ‘lateral masking’ or ‘supression’ and can be compared to dichotic masking discussed above. In both modalities neuronal and central processes seem to be involved in masking. However, the underlying mechanisms are not yet completely understood.
Similar to audition, masking is strongest for simultaneous stimulus presentation and decreases with increasing interval between test signal and masker [42, 58]. This is illustrated in Fig. 6. Vibrotactile masking at the thenar eminence is plotted with data from Gescheider et al. [35] for a sinusoidal masker and test signal at 250 Hz. He found that the rate of decay of post-masking appears to be approximately the same than pre-masking, independent of masker type (sinusoidal or noise) and stimulated mechano-receptor. Compared to audition, temporal masking seems to be much more extended for vibrations at the skin. In addition, for hearing there is a stronger asymmetry towards post-masting.
If more than one stimuli is presented, also other changes in sensation have been reported. E.g., a stimuli can cause a subsequent one to appear more intense, with increasing intensity for decreasing time interval in-between the both. This is called enhancement and has been reported for short tone bursts in audition [114] and vibrotactile perception [104].

2.5 Adaptation and fatigue

In the previous section, masking, the ability of an intense stimulus to obscure a second weaker test stimulus, was described. In this section, the ability of a temporally extended stimulus will be discussed to gradually desensitize a sensory channel. This might result in the decline of apparent magnitude of a stimulus during presentation. Even some time after the stimulus has stopped, it might be harder to detect a test signal.
Auditory
In audition it is often distinguished between adaptation and fatigue. Auditory adaptation refers to the decline in sensitivity within the first minutes of stimulus presentation [73]. However, this effect seems to be restricted to low sensation levels or high frequencies [50, 107]. Auditory fatigue is often understood as the shift in threshold after excessive exposure to a fatiguing stimulus. This temporary threshold shift (TTS) is well known from rock music [12] and will be summarized in the following. The TTS generally increases with increasing intensity and duration of the fatiguing stimulus. Similar to masking, larger TTS have been found with decreasing frequency separation. Interestingly, fatigue effects are less marked at low frequencies, possibly due to the middle ear reflex [73]. After cessation of the fatiguing stimulus, hearing recovers from the TTS approximately proportional to the logarithm of the recovery time, if the TTS is not too large (e.g., < 40 dB) and exposure time is not too long (e.g., < 1 days) [69]. Such an exemplary TTS curve is plotted in Fig. 7 for 25 min of stimulation at 4 kHz, a frequency where auditory fatigue is most effective.
Tactile
Similar to audition, the absolute perception threshold for vibration increases and recovers over time due to prolonged stimulation. In vibrotactile literature, this effect is sometimes referred to as fatigue and sometimes as adaptation. The TTS increases again with increasing intensity and duration of stimulation. For intense stimulation over a longer period, recovery time can last up to several minutes. Compared to audition, generally much lower sensation levels are required for the effect to appear and much steeper slopes have been reported [7, 29, 40, 108].
Two exemplary TTS curves are plotted in Fig. 7 using data from Hahn [46, 47]. The upper curve was measured using a large contact area on the fingerpad vibrating with 60 Hz. Only 34 dB sensation level were necessary to reach 17 dB TTS after 25 minutes of exposure. However, the TTS recovered much faster compared to audition. The lower curve was measured using a small contact area on the fingerpad vibrating at 200 Hz at only 14 dB sensation level. Again steep rising and falling slopes can be seen. Like for masking, it is widely believed, that adaptation can not occur between different vibrotactile channels [47, 51].

3 Differential sensitivity

Beside the absolute sensitivity, the smallest detectable changes of a stimulus are useful for a psychophysical comparison between the auditory and the tactile modality. Therefore, difference limen for intensity, frequency, duration and location will be discussed in the following.

3.1 Intensity discrimination

Auditory
In Fig. 8 auditory just noticeable differences in level (JNDLs) are plotted against frequency after Florentine et al. [23] and Jesteadt et al. [54]. For high sensation levels (70 dB and 80 dB above threshold) the auditory system is very sensitive to intensity changes, with a differential threshold of only 0.5 dB to 1 dB. This holds true over a broad frequency range. However, for low sensation levels (30 dB and 50 dB) the JNDLs rise, and some frequency dependence can be seen. Sensation level is relatively more important at high frequencies than at low ones, where the curves tend to converge. Unfortunately, no data is known for frequencies below 250 Hz.
If a single frequency is selected, the difference limen can be replotted as a function of sensation level. Figure 9 shows the differential threshold for a 1 kHz tone using data from various studies [23, 48, 54, 81]. It can be seen, that the auditory JNDLs decrease significantly with increasing sensation level. This is known as the ‘near miss’ to Weber’s law, which would predict a constant JNDL in dB independent of sensation level.
Tactile
Tactile difference thresholds for level have also been studied for a long time at various body sites. Different values between 0.4 and 2.3 dB can be found in the literature [26, 85, 92], e.g., it has been shown that JNDLs for seat vibrations can be as small as 0.5 dB [62]. Similar studies [1, 26, 79] found slightly higher values and are summarized in Fig. 8. None reported a dependence of JNDL on stimuli frequency. Interestingly, the study with the lowest levels measured the highest JNDLs (Bellmann [1]). The study with the strongest vibrations revealed the lowest difference thresholds (Matsumoto et al. [62]). This suggests a similar dependence of JNDL on sensation level as in audition. However, few data exists to test this hypothesis. Figure 9 shows different tactile studies, which measured difference limen as a function of level. Only Gescheider [41] reported a significant decrement of JNDL with increasing sensation level. Other studies found no effect. However, a smaller dynamic range [9] and much lower vibration frequencies [26, 79] were tested. It is therefore difficult to compare the results.

3.2 Frequency discrimination

Auditory
One of the fundamental characteristics of the auditory system is the ability to discriminate between different frequencies. Just noticeable differences in frequency (JNDFs) smaller than 1 Hz can be perceived at low frequencies. Figure 10 summarizes data from various laboratories [18, 72, 74, 84, 111]. It can be seen that the plotted auditory JNDF becomes larger as the frequency increases. The JNDFs are for tones with a minimum length of 200 ms. For shorter tones the JNDFs increase rapidly [19]. Again, an influence of sensation level on the difference limen was found, with higher level resulting in smaller JNDFs [111].
Tactile
The tactile ability to discriminate between vibration frequencies is quite limited if compared to the auditory system. However, only few data exists for tactile JNDF. This might be due to the difficulty of eliminating concomitant cues, like intensity differences, during experiments. Studies with stimulation at the hand, buttocks and forearm are plotted for comparison in Fig. 10.
Goff [43] investigated sinusoidal stimulation at the fingertip. Five frequencies (25 Hz, 50 Hz, 100 Hz, 150 Hz and 200 Hz) were selected, and their magnitudes were adjusted to equal intensities (approximately 20 dB above the threshold). He found that the JNDF ranged from 8 to over 100 Hz, increasing with increasing reference frequency.
Rothenberg et al. [85] experimented with sinusoidal stimuli at the volar forearm. Frequencies between 25 and 250 Hz were evaluated. Their amplitudes were normalized to achieve a uniform subjective magnitude (approximately 14 dB above threshold). The results revealed difference limen ranging from 4 to over 75 Hz.
The ability to detect changes in seat vibration frequency was measured by Merchel [63] using frequencies between 20 and 90 Hz. Stimulus amplitudes were normalized to equally perceived intensity approximately 20 dB above threshold. The measured JNDF again increased with increasing frequency, from approximately 7–66 Hz.

3.3 Temporal discrimination

A further interesting aspect of both modalities is the ability to make temporal discriminations. Different stimuli and approaches have been used for investigations in the auditory domain, e.g. recognition of amplitude modulation [28] or identification of an increase in duration [10]. However, there are not many studies in the tactile domain. A lucid evaluation of temporal resolution is provided by the minimum detectible separation between two successive stimuli. This is referred to as gap detection threshold and will be used exemplarily for comparison in the following.
Auditory
Numerous studies have investigated gap detection thresholds using different stimuli [21, 22, 25, 44, 49, 7577, 87]. The minimum auditory temporal resolution was found for clicks and broad noise. It is in the order of 2–3 ms. Exemplary data from Gescheider [31] and Plomp [82] is plotted in Fig. 11. It can be seen that also the gap detection threshold depends on sensation level and increases significantly towards lower intensities.
This is also true for sinusoidal excitation. Data from Moore et al. [78] is plotted in Fig. 12. At levels which are adequately audible, sinusoidal gap detection thresholds are roughly constant, but increase rapidly for levels close to the perception threshold. Minimum gap thresholds at about 17 ms for the 100 Hz stimulus and 6–9 ms for frequencies from 200 to 2000 Hz have been found. Slightly lower gap detection thresholds have been reported in other studies, e.g. 5 ms for 400 Hz by Shailer and Moore [88], which might be explained by different experimental procedures. No influence was found for embedding burst duration or temporal position of the gap [25, 49].
Tactile
Figures 11 and 12 compare tactile gap detection thresholds for noise, clicks and sinusoids delivered to the hand from different publications [11, 31, 34]. The minimum detectible gap between two tactile stimuli was found to be approximately 8–12 ms. Such thresholds were obtained for noise and clicks with sensation levels of about 35 dB and for sinusoids with sensation levels of about 20 dB. For lower intensities, the minimum detectible gap increases similar to our hearing. Different to the auditory modality, vibratory gaps seem to be harder to detect between noise bursts than between sinusoidal bursts. Gap detection thresholds for noise and clicks were found to be 3–10 times higher for tactile perception than for hearing. In contrast, sinusoidal gap thresholds seem to be comparable between the modalities at low sensation levels. The reason for this behavior is not yet understood.
With increasing age, the ability to detect temporal gaps in vibration reduces marginally [11]. Similarly, a slight increase in auditory gap detection threshold with age has been reported [49, 77]. However, it can be assumed that aging does not lead to severe reduction of temporal resolution in both modalities.

3.4 Location discrimination

Localization in the auditory and tactile domain is quite distinct. In audition, only two input signals from the ears are available to estimate the position of an auditory event somewhere in space. In contrast, mechanoreceptors are spatially distributed all over the body and tactile events are mostly perceived in proximity of the body.
Auditory
The localization ability of the auditory system can be partially described using the minimum angle at which two sources can be separated. This minimum audible angle (MAA) depends on the character of the sound and the position of the source relative to the listener. For impulsive sounds in front of the listener, MAAs about \(1^\circ \) were found [55]. If the source moves towards one site or in vertical direction, the minimum audible angle increases up to several degrees. Additionally, the frequency content plays a dominant role. Distance perception is quite blurred and familiarization with the sound plays an important role for estimating the distance of an auditory event [2].
Tactile
The spatial sensitivity of the tactile sensory system can be measured e.g. by a two point discrimination tasks, where two spatially separated stimuli are presented either simultaneously or shortly one after another. The subjects have to decide, whether they felt one or two contact points. Tactile spatial acuity varies significantly across the body surface. It was found that thresholds vary between about 1–2 mm and 45 mm depending on location on the skin [110]. Regions with high receptor density, e.g. the fingers, have low spatial discrimination thresholds, whereas areas with low receptor density, e.g. the back, show low spatial acuity. Interestingly, the perception of tactile distance seems to depend not only on the spatial separation, but also on the timing between two vibrotactile stimuli [4]. It has also been argued that the absolute vibrotactile localization ability depends on the position of stimulus sites relative to body landmarks, like the joints of the wrist or the elbow. E.g., the ability to localize vibrotactile stimuli on a linear array of tactors on the forearm is significantly better near the wrist and elbow, when compared to the localization for sites far from such natural anchor points [6]. Similar evidence for anatomically defined anchor points that provide localization referents was found on the abdomen [5].
If two spatially separated areas are stimulated, effects similar to auditory phantom source localization or precedence have been found [106], suggesting similar neural mechanisms for both modalities.
Some researches even tried to reproduce the localization ability of our hearing system. If two spatially separated microphones are used to drive two vibration actuators mounted to the forearms [105] or fingertips [30], subjects can accurately localize sound sources after some training. Interestingly, many subjects reported that ‘tactile sensations were projected out into space’ to match the position of the corresponding sound source. This decoupling of receptor location and perceptual event is known from vision and audition [92].

4 Summary

In this paper, basic psychophysical abilities and limitations of the auditory and vibrotactile modality are discussed in a comparative manner. The validity of such comparisons could be questioned because of different methodologies used in the reviewed papers. Different researchers pursued different questions at different times with different test participants (number, gender, age, ...) and different equipment. However, general trends in the data can often be identified. If available, data from several studies are plotted on top of each other to check consistency. Sometimes not all available data are presented for reasons of clarity. Being aware of the variations between the compared studies, the authors believe that this comparison provides the background for the auditory-tactile design, e.g., of perceptually optimized human–machine interfaces or multimodal music applications. This sections summarizes the main similarities and differences between both modalities and discusses useful applications scenarios.
Both modalities show frequency dependent perception thresholds, but with different characteristics. When designing auditory-tactile feedback with the goal of equal intensity in both modalities, this disparity can be compensated by careful frequency equalization using the differences between the threshold curves. Compared to the sense of hearing, vibrotactile perception is restricted to low frequencies. At 20 Hz the usable amplitude range of both modalities is similar. However, with increasing frequency the auditory dynamic range increases rapidly, while the vibrotactile dynamic range seems to remain constant up to approximately 200 Hz. Compared to audition, the increase in perceived magnitude is steeper with increasing level in the vibrotactile domain, particularly at low sensation levels. If the target of a multimodal design is to match the perceived intensity of a stimuli in both modalities, e.g., for auditory-tactile button feedback of a touch screen, the dynamic range of one domain should be adapted, e.g., using a compressor for vibration processing.
Both modalities show severe impairment of sensitivity with increasing age. This effect has a similar tendency: it is stronger towards the upper frequency limit of each modality. However, around 250 Hz the age-induced threshold shift seems to be stronger for the sense of touch than for hearing. This is especially crucial in the context of auditory-tactile feedback design, since the vibrotactile dynamic range is considerably smaller than the auditory dynamic range. A vibrotactile threshold shift of 20 dB at 200 Hz almost halves the available amplitude range. In other words: vibrations which are strong for younger subjects, might not be perceived at all by the elderly. Again, dynamic compression in the tactile domain helps the designer to reduce this effect with the drawback of a decreased dynamic range. Because less impairment was reported in the vibrotactile domain below 40 Hz, it might be worth to consider this frequency range for a feedback design which is less dependent on age.
The auditory system is able to integrate energy over time for stimuli durations up to approximately 1 s. A similar temporal effect can be found in the vibrotactile system for sufficiently high frequencies and relatively large stimulation areas. In addition energy integration over space has been observed. From this it follows that the size of a vibrating contact area, e.g., the size of a vibrating smart watch, must be taken into account by the designer if the perceived intensities are to be matched in both modalities.
Both modalities show the ability of one stimulus to mask (or enhance) another. In comparison, in the vibrotactile modality broader masking patterns are excited around the masker frequency with strong masking towards higher frequencies. Also in time domain, the vibrotactile threshold is raised over a longer period around the duration of a masker. Strong masking in the vibrotactile modality suggests that, e.g., when designing a system for auditory-tactile music reproduction, it might suffice to reproduce the fundamental of a complex sound in the vibratory domain without changing the overall percept.
Temporary threshold shifts due to prolonged stimulation occur in both modalities. In audition high levels or long exposure times are necessary. In the vibrotactile domain, even small sensation levels result in a temporary threshold shifts, which, however, grows and recovers fast. This effect might be relevant for the designer in practical applications if strong background vibrations are present, e.g., at the steering wheel when driving a car.
The just noticable differences in level for sound and vibration seem to be remarkably similar at low frequencies. However, the difference limen of tactile frequency discrimination are much higher compared to audition. This is very important in the context of multimodal design, since frequency information is one of the fundamental components of audio signals, resulting in pitch perception. This perceptual feature is only available to a very limited extent in the tactile domain.
Gap detection thresholds for sinusoidal stimuli are comparable in the tactile and the auditory system. However, this seems not to be the case for noises and clicks. The influence of the sensation level on auditory and tactile temporal resolving power is remarkably similar. Additionally, the gap detection thresholds are in the millisecond range, indicating good temporal resolution for both modalities. Sound and vibrations are therefore equally suitable for reproducing temporal information via a user interface. However, depending on the application, the different temporal acuity with different reproduction intensities must be taken into account.
It is difficult to compare the localization ability in both modalities. Auditory events can be perceived everywhere around the listener, however, resolution is quite limited. The spatial resolution of somatosensation is generally more detailed, but tactile events are restricted to the proximity of the skin. However, it has been demonstrated that the projection of tactile events towards a sound source is possible. Sensory substitution systems for the hearing impaired use the good location discrimination of the tactile system to encode information, e.g. the frequency of a sound, in order to overcome shortcomings in tactile frequency perception.
This article focused on the independent absolute and differential sensitivities of both modalities. It is important to note, however, that many multimodal illusions exist that exploit features of our audio and tactile perceptual abilities, e.g., the auditory-tactile loudness illusion [63]. A future article will explore these crossmodal interactions further.

Acknowledgements

Open Access funding provided by Projekt DEAL.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Bellmann MA (2002) Perception of whole-body vibrations: from basic experiments to effects of seat and steering-wheel vibrations on the passenger’s comfort inside vehicles. Ph.D. thesis, Carl von Ossietzky –University Oldenburg Bellmann MA (2002) Perception of whole-body vibrations: from basic experiments to effects of seat and steering-wheel vibrations on the passenger’s comfort inside vehicles. Ph.D. thesis, Carl von Ossietzky –University Oldenburg
2.
go back to reference Blauert J (1997) Spatial hearing—the psychophysics of human sound localization. MIT Press, Cambridge Blauert J (1997) Spatial hearing—the psychophysics of human sound localization. MIT Press, Cambridge
3.
go back to reference Bochereau S, Terekhov A, Hayward V (2014) Amplitude and duration interdependence in the perceived intensity of complex tactile signals. In: International conference on human haptic sensing and touch enabled computer applications, Springer, Berlin Bochereau S, Terekhov A, Hayward V (2014) Amplitude and duration interdependence in the perceived intensity of complex tactile signals. In: International conference on human haptic sensing and touch enabled computer applications, Springer, Berlin
4.
go back to reference Cholewiak RW (1999) The perception of tactile distance: influences of body site, space, and time. Perception 28(7):851–875 Cholewiak RW (1999) The perception of tactile distance: influences of body site, space, and time. Perception 28(7):851–875
5.
go back to reference Cholewiak RW, Brill JC, Schwab A (2004) Vibrotactile localization on the abdomen: effects of place and space. Percept Psychophys 66(6):970–987 Cholewiak RW, Brill JC, Schwab A (2004) Vibrotactile localization on the abdomen: effects of place and space. Percept Psychophys 66(6):970–987
6.
go back to reference Cholewiak RW, Collins AA (2003) Vibrotactile localization on the arm: Effects of place, space, and age. Percept Psychophys 65(7):1058–1077 Cholewiak RW, Collins AA (2003) Vibrotactile localization on the arm: Effects of place, space, and age. Percept Psychophys 65(7):1058–1077
7.
go back to reference Cohen L, Lindley S (1938) Studies in vibratory sensibility. Am J Psychol 51:44–63 Cohen L, Lindley S (1938) Studies in vibratory sensibility. Am J Psychol 51:44–63
8.
go back to reference Corso J (1959) Age and sex differences in pure-tone thresholds. J Acoust Soc Am 31(4):498–507 Corso J (1959) Age and sex differences in pure-tone thresholds. J Acoust Soc Am 31(4):498–507
9.
go back to reference Craig JC (1972) Difference threshold for intensity of tactile stimuli. Percept. Psychophys. 11(2):150–152 Craig JC (1972) Difference threshold for intensity of tactile stimuli. Percept. Psychophys. 11(2):150–152
10.
go back to reference Dooley GJ, Moore BCJ (1988) Duration discrimination of steady and gliding tones: a new method for estimating sensitivity to rate of change. J Acoust Soc Am 84(4):1332–1337 Dooley GJ, Moore BCJ (1988) Duration discrimination of steady and gliding tones: a new method for estimating sensitivity to rate of change. J Acoust Soc Am 84(4):1332–1337
11.
go back to reference van Doren CL, Gescheider GA, Verrillo RT (1990) Vibrotactile temporal gap detection as a function of age. J Acoust Soc Am 87(5):2201–2206 van Doren CL, Gescheider GA, Verrillo RT (1990) Vibrotactile temporal gap detection as a function of age. J Acoust Soc Am 87(5):2201–2206
12.
go back to reference Drake-Lee AB (1992) Beyond music: auditory temporary threshold shift in rock musicians after a heavy metal concert. J R Soc Med 85(10):617–619 Drake-Lee AB (1992) Beyond music: auditory temporary threshold shift in rock musicians after a heavy metal concert. J R Soc Med 85(10):617–619
13.
go back to reference Egan JP, Hake HW (1950) On the masking pattern of a simple auditory stimulus. J Acoust Soc Am 22(5):622–630 Egan JP, Hake HW (1950) On the masking pattern of a simple auditory stimulus. J Acoust Soc Am 22(5):622–630
14.
go back to reference Ehmer R (1959) Masking patterns of tones. J Acoust Soc Am 31(8):1115–1120 Ehmer R (1959) Masking patterns of tones. J Acoust Soc Am 31(8):1115–1120
15.
go back to reference Ehmer RH (1959) Masking by tones vs noise bands. J Acoust Soc Am 31(9):1253–1256 Ehmer RH (1959) Masking by tones vs noise bands. J Acoust Soc Am 31(9):1253–1256
16.
go back to reference Elliott L (1962) Backward and forward masking of probe tones of different frequencies. J Acoust Soc Am 34(8):1116–1117 Elliott L (1962) Backward and forward masking of probe tones of different frequencies. J Acoust Soc Am 34(8):1116–1117
17.
go back to reference Elliott L (1962) Backward masking: monotic and dichotic conditions. J Acoust Soc Am 97(5):38–44 Elliott L (1962) Backward masking: monotic and dichotic conditions. J Acoust Soc Am 97(5):38–44
18.
go back to reference Fastl H (1978) Frequency discrimination for pulsed versus modulated tones. J Acoust Soc Am 63(1):275–277 Fastl H (1978) Frequency discrimination for pulsed versus modulated tones. J Acoust Soc Am 63(1):275–277
19.
go back to reference Fastl H, Hesse A (1984) Frequency discrimination for pure tones at short durations. Acustica 56(1):41–47 Fastl H, Hesse A (1984) Frequency discrimination for pure tones at short durations. Acustica 56(1):41–47
20.
go back to reference Fastl H, Zwicker E (2007) Psychoacoustics: facts and models, 3rd edn. Springer, Berlin Fastl H, Zwicker E (2007) Psychoacoustics: facts and models, 3rd edn. Springer, Berlin
21.
go back to reference Fitzgibbons PJ, Wightman FL (1982) Gap detection in normal and hearing-impaired listeners. J Acoust Soc Am 72(3):761–765 Fitzgibbons PJ, Wightman FL (1982) Gap detection in normal and hearing-impaired listeners. J Acoust Soc Am 72(3):761–765
22.
go back to reference Florentine M, Buus S, Geng W (1999) Psychometric functions for gap detection in a yes-no procedure. J Acoust Soc Am 106(6):3512–3520 Florentine M, Buus S, Geng W (1999) Psychometric functions for gap detection in a yes-no procedure. J Acoust Soc Am 106(6):3512–3520
23.
go back to reference Florentine M, Buus S, Mason C (1987) Level discrimination as a function of level for tones from 0.25 to 16 kHz. J Acoust Soc Am 81(5):1528–1541 Florentine M, Buus S, Mason C (1987) Level discrimination as a function of level for tones from 0.25 to 16 kHz. J Acoust Soc Am 81(5):1528–1541
24.
go back to reference Florentine M, Fastl H, Buus S (1988) Temporal integration in normal hearing, cochlear impairment, and impairment simulated by masking. J Acoust Soc Am 84(1988):195–203 Florentine M, Fastl H, Buus S (1988) Temporal integration in normal hearing, cochlear impairment, and impairment simulated by masking. J Acoust Soc Am 84(1988):195–203
25.
go back to reference Forrest TG, Green DM (1987) Detection of partially filled gaps in noise and the temporal modulation transfer function. J Acoust Soc Am 82(6):1933–1943 Forrest TG, Green DM (1987) Detection of partially filled gaps in noise and the temporal modulation transfer function. J Acoust Soc Am 82(6):1933–1943
26.
go back to reference Forta NG (2009) Vibration intensity difference thresholds. Ph.D. thesis, University of Southampton Forta NG (2009) Vibration intensity difference thresholds. Ph.D. thesis, University of Southampton
27.
go back to reference Garner W (1947) The effect of frequency and spectrum on temporal integration of energy in the ear. J Acoust Soc Am 19(5):808–815 Garner W (1947) The effect of frequency and spectrum on temporal integration of energy in the ear. J Acoust Soc Am 19(5):808–815
28.
go back to reference Gelfand SA (1998) Hearing—an introduction to psychological and physiological acoustics, 3rd edn. Marcel Dekker, New York Gelfand SA (1998) Hearing—an introduction to psychological and physiological acoustics, 3rd edn. Marcel Dekker, New York
29.
go back to reference Gescheider G, Wright J (1969) Effects of vibrotactile adaptation on the perception of stimuli of varied intensity. J Exp Psychol 81(3):449–453 Gescheider G, Wright J (1969) Effects of vibrotactile adaptation on the perception of stimuli of varied intensity. J Exp Psychol 81(3):449–453
30.
go back to reference Gescheider GA (1965) Cutaneous sound localization. J Exp Psychol 70:617–625 Gescheider GA (1965) Cutaneous sound localization. J Exp Psychol 70:617–625
31.
go back to reference Gescheider GA (1967) Auditory and cutaneous temporal resolution of successive brief stimuli. J Exp Psychol 75(4):570–572 Gescheider GA (1967) Auditory and cutaneous temporal resolution of successive brief stimuli. J Exp Psychol 75(4):570–572
32.
go back to reference Gescheider GA (1976) Evidence in support of the duplex theory of mechanoreception. Sensor Process 1(1):68–76 Gescheider GA (1976) Evidence in support of the duplex theory of mechanoreception. Sensor Process 1(1):68–76
33.
go back to reference Gescheider GA, Berryhill ME, Verrillo RT, Bolanowski SJ (1999) Vibrotactile temporal summation: probability summation or neural integration? Somatosens Motor Res 16(3):229–242 Gescheider GA, Berryhill ME, Verrillo RT, Bolanowski SJ (1999) Vibrotactile temporal summation: probability summation or neural integration? Somatosens Motor Res 16(3):229–242
34.
go back to reference Gescheider GA, Bolanowski SJ, Chatterton SK (2003) Temporal gap detection in tactile channels. Somatosens Motor Res 20(3–4):239–247 Gescheider GA, Bolanowski SJ, Chatterton SK (2003) Temporal gap detection in tactile channels. Somatosens Motor Res 20(3–4):239–247
35.
go back to reference Gescheider GA, Bolanowski SJ, Verrillo RT (1989) Vibrotactile masking: effects of stimulus onset asynchrony and stimulus frequency. J Acoust Soc Am 85(5):2059–2064 Gescheider GA, Bolanowski SJ, Verrillo RT (1989) Vibrotactile masking: effects of stimulus onset asynchrony and stimulus frequency. J Acoust Soc Am 85(5):2059–2064
36.
go back to reference Gescheider GA, Joelson JM (1983) Vibrotactile temporal summation for threshold and suprathreshold levels of stimulation. Percept Psychophys 33(2):156–162 Gescheider GA, Joelson JM (1983) Vibrotactile temporal summation for threshold and suprathreshold levels of stimulation. Percept Psychophys 33(2):156–162
37.
go back to reference Gescheider GA, Verrillo RT (1982) Contralateral enhancement and suppression of vibrotactile sensation. Percept Psychophys 32(1):69–74 Gescheider GA, Verrillo RT (1982) Contralateral enhancement and suppression of vibrotactile sensation. Percept Psychophys 32(1):69–74
38.
go back to reference Gescheider GA, Verrillo RT (1984) Effects of the menstrual cycle on vibrotactile sensitivity. J Acoust Soc Am 36(6):586–592 Gescheider GA, Verrillo RT (1984) Effects of the menstrual cycle on vibrotactile sensitivity. J Acoust Soc Am 36(6):586–592
39.
go back to reference Gescheider GA, Verrillo RT, van Doren CL (1982) Prediction of vibrotactile masking functions. J Acoust Soc Am 72(5):1421–1426 Gescheider GA, Verrillo RT, van Doren CL (1982) Prediction of vibrotactile masking functions. J Acoust Soc Am 72(5):1421–1426
40.
go back to reference Gescheider GA, Wright JH (1968) Effects of sensory adaptation on the form of the psychophysical magnitude function for cutaneous vibration. J Exp Psychol 77(2):308–13 Gescheider GA, Wright JH (1968) Effects of sensory adaptation on the form of the psychophysical magnitude function for cutaneous vibration. J Exp Psychol 77(2):308–13
41.
go back to reference Gescheider GA, Zwislocki JJ, Rasmussen A (1996) Effects of stimulus duration on the amplitude difference limen for vibrotaction. J Acoust Soc Am 100(4.1):2312–2319 Gescheider GA, Zwislocki JJ, Rasmussen A (1996) Effects of stimulus duration on the amplitude difference limen for vibrotaction. J Acoust Soc Am 100(4.1):2312–2319
42.
go back to reference Gilson R (1969) Vibrotactile masking: some spatial and temporal aspects. Percept Psychophys 5:176–180 Gilson R (1969) Vibrotactile masking: some spatial and temporal aspects. Percept Psychophys 5:176–180
43.
go back to reference Goff GD (1967) Differential discrimination of frequency of cutaneous mechanical vibration. J Exp Psychol 74(2.1):294–299 Goff GD (1967) Differential discrimination of frequency of cutaneous mechanical vibration. J Exp Psychol 74(2.1):294–299
44.
go back to reference Green DM, Forrest TG (1989) Temporal gaps in noise and sinusoids. J Acoust Soc Am 86(3):961–970 Green DM, Forrest TG (1989) Temporal gaps in noise and sinusoids. J Acoust Soc Am 86(3):961–970
45.
go back to reference Griffin M (1990) Handbook of human vibrations. Elsevier Academic Press, London Griffin M (1990) Handbook of human vibrations. Elsevier Academic Press, London
46.
go back to reference Hahn JF (1966) Vibrotactile adaptation and recovery measured by two methods. J Exp Psychol 71(5):655–658 Hahn JF (1966) Vibrotactile adaptation and recovery measured by two methods. J Exp Psychol 71(5):655–658
47.
go back to reference Hahn JF (1968) Low-frequency vibrotactile adaptation. J Exp Psychol 78(4):655–659 Hahn JF (1968) Low-frequency vibrotactile adaptation. J Exp Psychol 78(4):655–659
48.
go back to reference Harris J (1963) Loudness discrimination. J Speech Hear Disorders Monograph Supplement Number II Harris J (1963) Loudness discrimination. J Speech Hear Disorders Monograph Supplement Number II
49.
go back to reference He NJ, Horwitz AR, Dubno JR, Mills JH (1999) Psychometric functions for gap detection in noise measured from young and aged subjects. J Acoust Soc Am 106(2):966–978 He NJ, Horwitz AR, Dubno JR, Mills JH (1999) Psychometric functions for gap detection in noise measured from young and aged subjects. J Acoust Soc Am 106(2):966–978
50.
go back to reference Hellman R, Miśkiewicz A, Scharf B (1997) Loudness adaptation and excitation patterns: effects of frequency and level. J Acoust Soc Am 101(4):2176–85 Hellman R, Miśkiewicz A, Scharf B (1997) Loudness adaptation and excitation patterns: effects of frequency and level. J Acoust Soc Am 101(4):2176–85
51.
go back to reference Hollins M, Goble AK, Whitsel BL, Tommerdahl M (1990) Time course and action spectrum of vibrotactile adaptation. Somatosens Motor Res 7(2):205–221 Hollins M, Goble AK, Whitsel BL, Tommerdahl M (1990) Time course and action spectrum of vibrotactile adaptation. Somatosens Motor Res 7(2):205–221
52.
go back to reference ISO 226:2003 (2003) Acoustics—Normal equal-loudness-level contours. Int Organ Standard ISO 226:2003 (2003) Acoustics—Normal equal-loudness-level contours. Int Organ Standard
53.
go back to reference Jesteadt W, Bacon SP, Lehman JR (1982) Forward masking as a function of frequency, masker level, and signal delay. J Acoust Soc Am 71(4):950–62 Jesteadt W, Bacon SP, Lehman JR (1982) Forward masking as a function of frequency, masker level, and signal delay. J Acoust Soc Am 71(4):950–62
54.
go back to reference Jesteadt W, Wier C, Green D (1977) Intensity discrimination as a function of frequency and sensation level. J Acoust Soc Am 61(1):169–177 Jesteadt W, Wier C, Green D (1977) Intensity discrimination as a function of frequency and sensation level. J Acoust Soc Am 61(1):169–177
55.
go back to reference Klemm O (1920) Untersuchungen über die Lokalisation von Schallreizen IV: Über den Einfluss des binauralen Zeitunterschieds auf die Lokalisation. Archiv für die gesamte Psychologie 40:117–145 Klemm O (1920) Untersuchungen über die Lokalisation von Schallreizen IV: Über den Einfluss des binauralen Zeitunterschieds auf die Lokalisation. Archiv für die gesamte Psychologie 40:117–145
56.
go back to reference Löfvenberg J, Johansson RS (1984) Regional differences and interindividual variability in sensitivity to vibration in the glabrous skin of the human hand. Brain Res 301(1):65–72 Löfvenberg J, Johansson RS (1984) Regional differences and interindividual variability in sensitivity to vibration in the glabrous skin of the human hand. Brain Res 301(1):65–72
57.
go back to reference Makous JC, Friedman RM, Vierck CJ (1995) A critical band filter in touch. J Neurosci 15(4):2808–2818 Makous JC, Friedman RM, Vierck CJ (1995) A critical band filter in touch. J Neurosci 15(4):2808–2818
58.
go back to reference Makous JC, Gescheider GA, Bolanowski SJ (1996) Decay in the effect of vibrotactile masking. J Acoust Soc Am 99(2):1124–1129 Makous JC, Gescheider GA, Bolanowski SJ (1996) Decay in the effect of vibrotactile masking. J Acoust Soc Am 99(2):1124–1129
59.
go back to reference Marieb EN, Hoehn K (2018) Human anatomy & physiology, 11th edn. Pearson, New York Marieb EN, Hoehn K (2018) Human anatomy & physiology, 11th edn. Pearson, New York
60.
go back to reference Marks LE (1979) Summation of vibrotactile intensity: an analog to auditory critical bands? Sensory Processes 3(2):188–203 Marks LE (1979) Summation of vibrotactile intensity: an analog to auditory critical bands? Sensory Processes 3(2):188–203
61.
go back to reference Matsumoto Y, Maeda S, Iwane Y, Iwata Y (2010) Factors affecting perception thresholds of vertical whole-body vibration in recumbent subjects: gender and age of subjects, and vibration duration. J Sound Vib 330:1810–1828 Matsumoto Y, Maeda S, Iwane Y, Iwata Y (2010) Factors affecting perception thresholds of vertical whole-body vibration in recumbent subjects: gender and age of subjects, and vibration duration. J Sound Vib 330:1810–1828
62.
go back to reference Matsumoto Y, Maeda S, Oji Y (2002) Influence of frequency on difference thresholds for magnitude of vertical sinusoidal whole-body vibration. Ind Health 40(4):313–319 Matsumoto Y, Maeda S, Oji Y (2002) Influence of frequency on difference thresholds for magnitude of vertical sinusoidal whole-body vibration. Ind Health 40(4):313–319
63.
go back to reference Merchel S (2014) Auditory-tactile music perception. Shaker Verlag, Berlin Merchel S (2014) Auditory-tactile music perception. Shaker Verlag, Berlin
64.
go back to reference Merchel S, Altinsoy ME (2014) The influence of vibrations on musical experience. J Audio Eng Soc 62(4):1–15 Merchel S, Altinsoy ME (2014) The influence of vibrations on musical experience. J Audio Eng Soc 62(4):1–15
65.
go back to reference Merchel S, Altinsoy ME, Kaule D, Volkmar C (2015) Vibro-Acoustical Sound Reproduction in Cars. In: Proceedings of the 22nd International Congress Sound Vib. Florence, Italy Merchel S, Altinsoy ME, Kaule D, Volkmar C (2015) Vibro-Acoustical Sound Reproduction in Cars. In: Proceedings of the 22nd International Congress Sound Vib. Florence, Italy
66.
go back to reference Merchel S, Altinsoy ME, Schwendicke A (2015) Tactile intensity perception compared to auditory loudness perception. In: Proceedings of IEEE World Haptics. Chicago, USA Merchel S, Altinsoy ME, Schwendicke A (2015) Tactile intensity perception compared to auditory loudness perception. In: Proceedings of IEEE World Haptics. Chicago, USA
67.
go back to reference Merchel S, Altinsoy ME, Stamm M (2012) Touch the sound: audio-driven tactile feedback for audio mixing applications. J Audio Eng Soc 60(1/2):47–53 Merchel S, Altinsoy ME, Stamm M (2012) Touch the sound: audio-driven tactile feedback for audio mixing applications. J Audio Eng Soc 60(1/2):47–53
68.
go back to reference Merchel S, Dou J, Altinsoy ME (2016) Comparison of the perceived intensity of time-varying signals in the tactile and auditory domain. In: Proceedings of Internoise. Hamburg, Germany Merchel S, Dou J, Altinsoy ME (2016) Comparison of the perceived intensity of time-varying signals in the tactile and auditory domain. In: Proceedings of Internoise. Hamburg, Germany
69.
go back to reference Miller J (1974) Effects of noise on people. J Acoust Soc Am 56(3):729–764 Miller J (1974) Effects of noise on people. J Acoust Soc Am 56(3):729–764
70.
go back to reference Miwa T, Yonekawa Y (1974) Evaluation methods for vibrations. Appl Acoust 7(2):83–101 Miwa T, Yonekawa Y (1974) Evaluation methods for vibrations. Appl Acoust 7(2):83–101
71.
go back to reference Mø ller H, Pedersen CS (2004) Hearing at low and infrasonic frequencies. Noise Health 6(23):37–57 Mø ller H, Pedersen CS (2004) Hearing at low and infrasonic frequencies. Noise Health 6(23):37–57
72.
go back to reference Moore BCJ (1973) Frequency difference limens for short-duration tones. J Acoust Soc Am 54(3):610–619 Moore BCJ (1973) Frequency difference limens for short-duration tones. J Acoust Soc Am 54(3):610–619
73.
go back to reference Moore BCJ (2003) An introduction to the psychology of hearing, 5th edn. Academic Press, San Diego Moore BCJ (2003) An introduction to the psychology of hearing, 5th edn. Academic Press, San Diego
74.
go back to reference Moore BCJ, Glasberg B (1989) Mechanisms underlying the frequency discrimination of pulsed tones and the detection of frequency modulation. J Acoust Soc Am 86(5):1722–1732 Moore BCJ, Glasberg B (1989) Mechanisms underlying the frequency discrimination of pulsed tones and the detection of frequency modulation. J Acoust Soc Am 86(5):1722–1732
75.
go back to reference Moore BCJ, Glasberg BR (1988) Gap detection with sinusoids and noise in normal, impaired, and electrically stimulated ears. J Acoust Soc Am 83(3):1093–1101 Moore BCJ, Glasberg BR (1988) Gap detection with sinusoids and noise in normal, impaired, and electrically stimulated ears. J Acoust Soc Am 83(3):1093–1101
76.
go back to reference Moore BCJ, Glasberg BR, Donaldson E, McPherson T, Plack CJ (1989) Detection of temporal gaps in sinusoids by normally hearing and hearing-impaired subjects. J Acoust Soc Am 85(3):1266–1275 Moore BCJ, Glasberg BR, Donaldson E, McPherson T, Plack CJ (1989) Detection of temporal gaps in sinusoids by normally hearing and hearing-impaired subjects. J Acoust Soc Am 85(3):1266–1275
77.
go back to reference Moore BCJ, Peters RW, Glasberg BR (1992) Detection of temporal gaps in sinusoids by elderly subjects with and without hearing loss. J Acoust Soc Am 92(4.1):1923–1932 Moore BCJ, Peters RW, Glasberg BR (1992) Detection of temporal gaps in sinusoids by elderly subjects with and without hearing loss. J Acoust Soc Am 92(4.1):1923–1932
78.
go back to reference Moore BCJ, Peters RW, Glasberg BR (1993) Detection of temporal gaps in sinusoids: effects of frequency and level. J Acoust Soc Am 93(3):1563–1570 Moore BCJ, Peters RW, Glasberg BR (1993) Detection of temporal gaps in sinusoids: effects of frequency and level. J Acoust Soc Am 93(3):1563–1570
79.
go back to reference Morioka M, Griffin MJ (2000) Difference thresholds for intensity perception of whole-body vertical vibration: effect of frequency and magnitude. J Acoust Soc Am 107(1):620–624 Morioka M, Griffin MJ (2000) Difference thresholds for intensity perception of whole-body vertical vibration: effect of frequency and magnitude. J Acoust Soc Am 107(1):620–624
80.
go back to reference Oxenham AJ, Moore BCJ (1994) Modeling the additivity of nonsimultaneous masking. Hear Res 80(1):105–118 Oxenham AJ, Moore BCJ (1994) Modeling the additivity of nonsimultaneous masking. Hear Res 80(1):105–118
81.
go back to reference Penner MJ, Leshowitz B, Cudahy E, Ricard G (1974) Intensity discrimination for pulsed sinusoids of various frequencies. Percept Psychophys 15(3):568–570 Penner MJ, Leshowitz B, Cudahy E, Ricard G (1974) Intensity discrimination for pulsed sinusoids of various frequencies. Percept Psychophys 15(3):568–570
82.
go back to reference Plomp R (1964) Rate of decay of auditory sensation. J Acoust Soc Am 36(2):277–282 Plomp R (1964) Rate of decay of auditory sensation. J Acoust Soc Am 36(2):277–282
83.
go back to reference Plomp R, Bouman M (1959) Relation between hearing threshold and duration for tone pulses. J Acoust Soc Am 31(6):749–758 Plomp R, Bouman M (1959) Relation between hearing threshold and duration for tone pulses. J Acoust Soc Am 31(6):749–758
84.
go back to reference Rosenblith WA, Stevens KN (1953) On the DL for frequency. J Acoust Soc Am 25(5):980–985 Rosenblith WA, Stevens KN (1953) On the DL for frequency. J Acoust Soc Am 25(5):980–985
85.
go back to reference Rothenberg M, Verrillo RT, Zahorian SA, Brachman ML, Bolanowski SJJ (1977) Vibrotactile frequency for encoding a speech parameter. J Acoust Soc Am 66(4):1003–1012 Rothenberg M, Verrillo RT, Zahorian SA, Brachman ML, Bolanowski SJJ (1977) Vibrotactile frequency for encoding a speech parameter. J Acoust Soc Am 66(4):1003–1012
86.
go back to reference Schmidt RF, Lang F (2007) Physiologie des menschen mit pathophysiologie, 30th edn. Springer, Berlin Schmidt RF, Lang F (2007) Physiologie des menschen mit pathophysiologie, 30th edn. Springer, Berlin
87.
go back to reference Shailer MJ, Moore BCJ (1983) Gap detection as a function of frequency, bandwidth, and level. J Acoust Soc Am 74(2):467–473 Shailer MJ, Moore BCJ (1983) Gap detection as a function of frequency, bandwidth, and level. J Acoust Soc Am 74(2):467–473
88.
go back to reference Shailer MJ, Moore BCJ (1987) Gap detection and the auditory filter: phase effects using sinusoidal stimuli. J Acoust Soc Am 81(4):1110–1117 Shailer MJ, Moore BCJ (1987) Gap detection and the auditory filter: phase effects using sinusoidal stimuli. J Acoust Soc Am 81(4):1110–1117
89.
go back to reference Spoor A (1967) Presbycusis values in relation to noise induced hearing loss. Int J Audiol 6(1):48–57 Spoor A (1967) Presbycusis values in relation to noise induced hearing loss. Int J Audiol 6(1):48–57
90.
go back to reference Stamm M, Altinsoy ME, Merchel S (2010) Frequenzwahrnehmung von Ganzkörperschwingungen im Vergleich zur auditiven Wahrnehmung I. In: Proceedings of DAGA 2010—36th German Annual Conference on Acoustics. Berlin, Germany Stamm M, Altinsoy ME, Merchel S (2010) Frequenzwahrnehmung von Ganzkörperschwingungen im Vergleich zur auditiven Wahrnehmung I. In: Proceedings of DAGA 2010—36th German Annual Conference on Acoustics. Berlin, Germany
91.
go back to reference Stuart M, Turman AB, Shaw J, Walsh N, Nguyen V (2003) Effects of aging on vibration detection thresholds at various body regions. BMC Geriatrics 3(1):1–10 Stuart M, Turman AB, Shaw J, Walsh N, Nguyen V (2003) Effects of aging on vibration detection thresholds at various body regions. BMC Geriatrics 3(1):1–10
92.
go back to reference Summers IR (1992) Tactile aids for the hearing impaired. Whurr, London Summers IR (1992) Tactile aids for the hearing impaired. Whurr, London
93.
go back to reference Tobias JV (1977) Low frequency masking patterns. J Acoust Soc Am 61(2):571–575 Tobias JV (1977) Low frequency masking patterns. J Acoust Soc Am 61(2):571–575
94.
go back to reference Verrillo RT (1963) Effect of contactor area on the vibrotactile threshold. J Acoust Soc Am 37:843–846 Verrillo RT (1963) Effect of contactor area on the vibrotactile threshold. J Acoust Soc Am 37:843–846
95.
go back to reference Verrillo RT (1965) Temporal summation in vibrotactile sensitivity. J Acoust Soc Am 37(5):843–846 Verrillo RT (1965) Temporal summation in vibrotactile sensitivity. J Acoust Soc Am 37(5):843–846
96.
go back to reference Verrillo RT (1966) Effect of spatial parameters on the vibrotactile threshold. J Exp Psychol 71:570–575 Verrillo RT (1966) Effect of spatial parameters on the vibrotactile threshold. J Exp Psychol 71:570–575
97.
go back to reference Verrillo RT (1966) Vibrotactile thresholds for hairy skin. J Exp Psychol 72:47–50 Verrillo RT (1966) Vibrotactile thresholds for hairy skin. J Exp Psychol 72:47–50
98.
go back to reference Verrillo RT (1979) Change in vibrotactile thresholds as a function of age. Sensor Process 3:49–59 Verrillo RT (1979) Change in vibrotactile thresholds as a function of age. Sensor Process 3:49–59
99.
go back to reference Verrillo RT (1979) Comparison of vibrotactile threshold and suprathreshold responses in men and women. Percept Psychophys 26(1):20–24 Verrillo RT (1979) Comparison of vibrotactile threshold and suprathreshold responses in men and women. Percept Psychophys 26(1):20–24
100.
go back to reference Verrillo RT (1980) Age related changes in the sensitivity to vibration. J Gerontol 35(2):185–193 Verrillo RT (1980) Age related changes in the sensitivity to vibration. J Gerontol 35(2):185–193
101.
go back to reference Verrillo RT (2009) Bioresponse to vibration. In: Havelock D, Kuwano S, Vorländer M (eds.) Handbook of signal processing in acoustics, pp 1185–1244 Verrillo RT (2009) Bioresponse to vibration. In: Havelock D, Kuwano S, Vorländer M (eds.) Handbook of signal processing in acoustics, pp 1185–1244
102.
go back to reference Verrillo RT, Bolanowski SJ, Gescheider GA (2002) Effect of aging on the subjective magnitude of vibration. Somatosens Motor Res 19(3):238–244 Verrillo RT, Bolanowski SJ, Gescheider GA (2002) Effect of aging on the subjective magnitude of vibration. Somatosens Motor Res 19(3):238–244
103.
go back to reference Verrillo RT, Fraioli AJ, Smith RL (1969) Sensation magnitude of vibrotactile stimuli. Percept Psychophys 6(6A):366–372 Verrillo RT, Fraioli AJ, Smith RL (1969) Sensation magnitude of vibrotactile stimuli. Percept Psychophys 6(6A):366–372
104.
go back to reference Verrillo RT, Gescheider GA (1975) Enhancement and summation in the perception of two successive vibrotactile stimuli. Percept Psychophys 18(2):128–136 Verrillo RT, Gescheider GA (1975) Enhancement and summation in the perception of two successive vibrotactile stimuli. Percept Psychophys 18(2):128–136
105.
go back to reference von Békésy G (1957) Sensations on the skin similar to directional hearing, beats, and harmonics of the ear. J Acoust Soc Am 841:830–841 von Békésy G (1957) Sensations on the skin similar to directional hearing, beats, and harmonics of the ear. J Acoust Soc Am 841:830–841
106.
go back to reference von Békésy G (1958) Funneling in the nervous system and its role in loudness and sensation intensity on the skin. J Acoust Soc Am 30(5):399–412 von Békésy G (1958) Funneling in the nervous system and its role in loudness and sensation intensity on the skin. J Acoust Soc Am 30(5):399–412
107.
go back to reference Ward WD (1966) Temporary threshold shift in males and females. J Acoust Soc Am 40(2):478–485 Ward WD (1966) Temporary threshold shift in males and females. J Acoust Soc Am 40(2):478–485
108.
go back to reference Wedell CH, Cummings SBJ (1938) Fatigue of the vibratory sense. J Exp Psychol 22(5):429–438 Wedell CH, Cummings SBJ (1938) Fatigue of the vibratory sense. J Exp Psychol 22(5):429–438
109.
go back to reference Wegel R, Lane C (1924) The auditory masking of one sound by another and its probable relation to the dynamics of the inner ear. Phys Rev 23:266–285 Wegel R, Lane C (1924) The auditory masking of one sound by another and its probable relation to the dynamics of the inner ear. Phys Rev 23:266–285
110.
go back to reference Weinstein S (1968) Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In: Kenshalo DR (ed) The skin senses. Charles C Thomas, Illinois, pp 195–218 Weinstein S (1968) Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In: Kenshalo DR (ed) The skin senses. Charles C Thomas, Illinois, pp 195–218
111.
go back to reference Wier C, Jesteadt W, Green D (1977) Frequency discrimination as a function of frequency and sensation level. J Acoust Soc Am 61(1):178–184 Wier C, Jesteadt W, Green D (1977) Frequency discrimination as a function of frequency and sensation level. J Acoust Soc Am 61(1):178–184
112.
go back to reference Winckel F (1969) Nachrichtentechnik unter kybernetischen Aspekten. In: Handbuch für HF- und E-Techniker Bd. 8. Berlin, Germany Winckel F (1969) Nachrichtentechnik unter kybernetischen Aspekten. In: Handbuch für HF- und E-Techniker Bd. 8. Berlin, Germany
113.
go back to reference Zwislocki JJ (1960) Theory of temporal auditory summation. J Acoust Soc Am 3(8):1046–1060 Zwislocki JJ (1960) Theory of temporal auditory summation. J Acoust Soc Am 3(8):1046–1060
114.
go back to reference Zwislocki JJ, Sokolich WG (1974) On loudness enhancement of a tone burst by a preceding tone burst. Percept Psychophys 16(1):87–90 Zwislocki JJ, Sokolich WG (1974) On loudness enhancement of a tone burst by a preceding tone burst. Percept Psychophys 16(1):87–90
Metadata
Title
Psychophysical comparison of the auditory and tactile perception: a survey
Authors
Sebastian Merchel
M. Ercan Altinsoy
Publication date
21-07-2020
Publisher
Springer International Publishing
Published in
Journal on Multimodal User Interfaces / Issue 3/2020
Print ISSN: 1783-7677
Electronic ISSN: 1783-8738
DOI
https://doi.org/10.1007/s12193-020-00333-z

Other articles of this Issue 3/2020

Journal on Multimodal User Interfaces 3/2020 Go to the issue

Premium Partner