Skip to main content
Top
Published in: Quantum Information Processing 6/2019

01-06-2019

Quantifying quantum coherence based on the generalized \(\alpha \)z-relative R\(\acute{e}\)nyi entropy

Authors: Xue-Na Zhu, Zhi-Xiang Jin, Shao-Ming Fei

Published in: Quantum Information Processing | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a family of coherence quantifiers based on the generalized \(\alpha \)z-relative R\(\acute{e}\)nyi entropy. These quantifiers satisfy all the standard criteria for well-defined measures of coherence and include some existing coherence measures as special cases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)CrossRef Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)CrossRef
2.
go back to reference Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)CrossRef Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)CrossRef
3.
go back to reference Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013)ADSCrossRef Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013)ADSCrossRef
4.
go back to reference Rybak, L., Amaran, S., Levin, L., Tomza, M., Moszynski, R., Kosloff, R., Koch, C.P., Amitay, Z.: Generating molecular rovibrational coherence by two-photon femtosecond photoassociation of thermally hot atoms. Phys. Rev. Lett. 107, 273001 (2011)ADSCrossRef Rybak, L., Amaran, S., Levin, L., Tomza, M., Moszynski, R., Kosloff, R., Koch, C.P., Amitay, Z.: Generating molecular rovibrational coherence by two-photon femtosecond photoassociation of thermally hot atoms. Phys. Rev. Lett. 107, 273001 (2011)ADSCrossRef
5.
go back to reference Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)ADSCrossRef Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)ADSCrossRef
6.
go back to reference Rebentrost, P., Mohseni, M., Aspuru-Guzik, A.: Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J. Phys. Chem. B 113, 9942 (2009)CrossRef Rebentrost, P., Mohseni, M., Aspuru-Guzik, A.: Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J. Phys. Chem. B 113, 9942 (2009)CrossRef
7.
go back to reference Witt, B., Mintert, F.: Stationary quantum coherence and transport in disordered networks. New J. Phys. 15, 093020 (2013)ADSCrossRef Witt, B., Mintert, F.: Stationary quantum coherence and transport in disordered networks. New J. Phys. 15, 093020 (2013)ADSCrossRef
8.
go back to reference Karlström, O., Linke, H., Karlström, G., Wacker, A.: Increasing thermoelectric performance using coherent transport. Phys. Rev. B 84, 113415 (2011)ADSCrossRef Karlström, O., Linke, H., Karlström, G., Wacker, A.: Increasing thermoelectric performance using coherent transport. Phys. Rev. B 84, 113415 (2011)ADSCrossRef
9.
go back to reference Bu, K.F., Singh, U., Fei, S.M., Pati, A.K., Wu, J.D.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)ADSMathSciNetCrossRef Bu, K.F., Singh, U., Fei, S.M., Pati, A.K., Wu, J.D.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)ADSMathSciNetCrossRef
10.
go back to reference Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)ADSCrossRef Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)ADSCrossRef
11.
go back to reference Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)ADSCrossRef Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)ADSCrossRef
12.
go back to reference Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)ADSCrossRef Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)ADSCrossRef
13.
go back to reference Qi, X., Gao, T., Yan, F.: Measuring coherence with entanglement concurrence. J. Phys. A Math. Theor. 50, 285301 (2017)MathSciNetCrossRef Qi, X., Gao, T., Yan, F.: Measuring coherence with entanglement concurrence. J. Phys. A Math. Theor. 50, 285301 (2017)MathSciNetCrossRef
14.
go back to reference Du, S., Bai, S., Qi, X.: Coherence measures and optimal conversion for coherent states. Quantum Inf. Comput. 15, 1307 (2015)MathSciNet Du, S., Bai, S., Qi, X.: Coherence measures and optimal conversion for coherent states. Quantum Inf. Comput. 15, 1307 (2015)MathSciNet
15.
go back to reference Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRef Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRef
16.
go back to reference Yu, X.D., Zhang, D.J., Xu, G.F., Tong, D.M.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302 (2016)ADSCrossRef Yu, X.D., Zhang, D.J., Xu, G.F., Tong, D.M.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302 (2016)ADSCrossRef
17.
go back to reference Xiong, C.H., Kumar, A., Wu, J.D.: Family of coherence measures and duality between quantum coherence and path distinguishability. Phys. Rev. A 98, 032324 (2018)ADSCrossRef Xiong, C.H., Kumar, A., Wu, J.D.: Family of coherence measures and duality between quantum coherence and path distinguishability. Phys. Rev. A 98, 032324 (2018)ADSCrossRef
18.
20.
21.
go back to reference Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)ADSCrossRef Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)ADSCrossRef
22.
go back to reference Jin, Z.X., Fei, S.M.: Quantifying quantum coherence and non-classical correlation based on Hellinger distance. Phys. Rev. A 97, 062342 (2018)ADSCrossRef Jin, Z.X., Fei, S.M.: Quantifying quantum coherence and non-classical correlation based on Hellinger distance. Phys. Rev. A 97, 062342 (2018)ADSCrossRef
23.
go back to reference Rastegin, A.E.: Quantum-coherence quantifiers based on the Tsallis relative \(\alpha \) entropies. Phys. Rev. A 93, 032136 (2016)ADSCrossRef Rastegin, A.E.: Quantum-coherence quantifiers based on the Tsallis relative \(\alpha \) entropies. Phys. Rev. A 93, 032136 (2016)ADSCrossRef
24.
go back to reference Zhao, H.Q., Yu, C.S.: Remedying the strong monotonicity of the coherence measure in terms of the Tsallis relative \(\alpha \) entropy. Sci. Rep. 8, b299 (2018)ADSCrossRef Zhao, H.Q., Yu, C.S.: Remedying the strong monotonicity of the coherence measure in terms of the Tsallis relative \(\alpha \) entropy. Sci. Rep. 8, b299 (2018)ADSCrossRef
25.
go back to reference Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRef Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRef
27.
Metadata
Title
Quantifying quantum coherence based on the generalized –z-relative Rnyi entropy
Authors
Xue-Na Zhu
Zhi-Xiang Jin
Shao-Ming Fei
Publication date
01-06-2019
Publisher
Springer US
Published in
Quantum Information Processing / Issue 6/2019
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2291-9

Other articles of this Issue 6/2019

Quantum Information Processing 6/2019 Go to the issue