Skip to main content
Top
Published in: Quantum Information Processing 2/2020

01-02-2020

Quantum bit commitment on IBM QX

Authors: Dhoha A. Almubayedh, Ghadeer Alazman, Mashael Alkhalis, Manal Alabdali, Naya Nagy, Marius Nagy, Ahmet Emin Tatar, Malak Alfosail, Atta Rahman, Norah AlMubairik

Published in: Quantum Information Processing | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum bit commitment (QBC) is a quantum version of the classical bit commitment security primitive. As other quantum security primitives and protocols, QBC improves on cheating detection over its classical counterpart. The implementation of the QBC protocol below relies on the use of common quantum gates: the Hadamard gate used for orthonormal bases and the CNOT gate used to swap qubits. The protocol was run and tested on IBM quantum experience (IBM QX). IBM QX offers two different quantum environments: as a simulator and as a real quantum machine. In our implementation, honest and dishonest participants were considered. Results of both the simulation and the quantum execution were compared against the theoretical expectations. The IBM QX simulator gives results that match the theoretical model. The IBM QX real computer deviates from the expected behavior by a measurable amount. Using the standard deviation and the Hamming distance, the conclusion is that the quantum computer is usable as the difference to the simulator is within an acceptable margin of error. The QBC protocol of choice is fully secure against cheating by Bob. The only way Alice can cheat is using multi-dimensional entanglement. The cost for Alice to cheat is exponential in the number of qubits used, namely \( O(2^{6n + 3k + 1} ) \).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ain, N.U., Atta-ur-Rahman, : Quantum cryptography: a comprehensive survey. J. Inf. Assur. Secur. (JIAS) 11(1), 31–38 (2016) Ain, N.U., Atta-ur-Rahman, : Quantum cryptography: a comprehensive survey. J. Inf. Assur. Secur. (JIAS) 11(1), 31–38 (2016)
2.
go back to reference Ain, N., Atta-ur-Rahman, Nadeem, M., Abbasi, A.G.: Quantum cryptography trends: a milestone in information security. In: International Conference on Hybrid Intelligent Systems, Springer, pp. 25–39, November 16–18, 2015, Seoul, Korea Ain, N., Atta-ur-Rahman, Nadeem, M., Abbasi, A.G.: Quantum cryptography trends: a milestone in information security. In: International Conference on Hybrid Intelligent Systems, Springer, pp. 25–39, November 16–18, 2015, Seoul, Korea
3.
go back to reference Bennett, C.H., Brassard, G.: An update on quantum cryptography. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology, CRYPTO 1984. Lecture Notes in Computer Science, vol. 196. Springer, Berlin (1984) Bennett, C.H., Brassard, G.: An update on quantum cryptography. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology, CRYPTO 1984. Lecture Notes in Computer Science, vol. 196. Springer, Berlin (1984)
4.
go back to reference Brassard, G., Crépeau, C.: 25 Years of quantum cryptography. SIGACT News 27(3), 13–24 (1996)CrossRef Brassard, G., Crépeau, C.: 25 Years of quantum cryptography. SIGACT News 27(3), 13–24 (1996)CrossRef
6.
go back to reference Crépeau, C., Salvail, L.: Quantum oblivious mutual identification. In: Guillou, L.C., Quisquater, J.J. (eds.), Proceedings of the 14th Annual International Conference on Theory and Application of Cryptographic Techniques (EUROCRYPT’95), Springer, Berlin, pp. 133–146 (1995) Crépeau, C., Salvail, L.: Quantum oblivious mutual identification. In: Guillou, L.C., Quisquater, J.J. (eds.), Proceedings of the 14th Annual International Conference on Theory and Application of Cryptographic Techniques (EUROCRYPT’95), Springer, Berlin, pp. 133–146 (1995)
7.
go back to reference Forouzan, B.A., Fegan, S.C.: Data Communications and Networking. McGraw-Hill Higher Education, New York (2007) Forouzan, B.A., Fegan, S.C.: Data Communications and Networking. McGraw-Hill Higher Education, New York (2007)
8.
go back to reference Kaniewski, J., Tomamichel, M., Hanggi, E., Wehner, S.: Secure bit commitment from relativistic constraints. IEEE Trans. Inf. Theory 59(7), 4687–4699 (2013)MathSciNetCrossRef Kaniewski, J., Tomamichel, M., Hanggi, E., Wehner, S.: Secure bit commitment from relativistic constraints. IEEE Trans. Inf. Theory 59(7), 4687–4699 (2013)MathSciNetCrossRef
9.
go back to reference Mayers, D.: Quantum key distribution and string oblivious transfer in noisy channels. In: Koblitz, N. (ed.) Advances in Cryptology, CRYPTO’96. Lecture Notes in Computer Science, vol. 1109, pp. 343–357. Springer, Berlin (1996)MATH Mayers, D.: Quantum key distribution and string oblivious transfer in noisy channels. In: Koblitz, N. (ed.) Advances in Cryptology, CRYPTO’96. Lecture Notes in Computer Science, vol. 1109, pp. 343–357. Springer, Berlin (1996)MATH
11.
go back to reference Mitra, S., Jana, B., Bhattacharya, S., Pal, P., Poray, J.: Quantum cryptography: overview, security issues and future challenges. In: 2017 4th International Conference on Opto-Electronics and Applied Optics (Optronix) (2017) Mitra, S., Jana, B., Bhattacharya, S., Pal, P., Poray, J.: Quantum cryptography: overview, security issues and future challenges. In: 2017 4th International Conference on Opto-Electronics and Applied Optics (Optronix) (2017)
12.
go back to reference Nagy, N., Nagy, M.: Quantum bit commitment-within an equivalence class. In: Unconventional Computing (2016) Nagy, N., Nagy, M.: Quantum bit commitment-within an equivalence class. In: Unconventional Computing (2016)
13.
go back to reference Nielsen, A.M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRef Nielsen, A.M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRef
14.
go back to reference Spekkens, R.W., Rudolph, T.: Degrees of concealment and bindingness in quantum bit commitment protocols. Phys. Rev. Lett. A 65, 012310 (2002)ADSCrossRef Spekkens, R.W., Rudolph, T.: Degrees of concealment and bindingness in quantum bit commitment protocols. Phys. Rev. Lett. A 65, 012310 (2002)ADSCrossRef
15.
go back to reference Testa, E., Soeken, M., Amaru, L.G., Michelli, G.D.: Logic synthesis for established and emerging computing. Proc. IEEE 107(1), 165–184 (2019)CrossRef Testa, E., Soeken, M., Amaru, L.G., Michelli, G.D.: Logic synthesis for established and emerging computing. Proc. IEEE 107(1), 165–184 (2019)CrossRef
16.
go back to reference Vissers, G., Bouten, L.: Implementing quantum stochastic differential equations on a quantum computer. Quantum Inf. Process. 18, 152 (2019)ADSMathSciNetCrossRef Vissers, G., Bouten, L.: Implementing quantum stochastic differential equations on a quantum computer. Quantum Inf. Process. 18, 152 (2019)ADSMathSciNetCrossRef
17.
go back to reference Zulehner, A., Paler, A., Wille, R.: Efficient mapping of quantum circuits to the IBM QX Architectures. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2018)—Early Access. Initial version in 2018 Design, Automation and Test in Europe Conference and Exhibition, pp. 1135–1138 Zulehner, A., Paler, A., Wille, R.: Efficient mapping of quantum circuits to the IBM QX Architectures. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2018)—Early Access. Initial version in 2018 Design, Automation and Test in Europe Conference and Exhibition, pp. 1135–1138
Metadata
Title
Quantum bit commitment on IBM QX
Authors
Dhoha A. Almubayedh
Ghadeer Alazman
Mashael Alkhalis
Manal Alabdali
Naya Nagy
Marius Nagy
Ahmet Emin Tatar
Malak Alfosail
Atta Rahman
Norah AlMubairik
Publication date
01-02-2020
Publisher
Springer US
Published in
Quantum Information Processing / Issue 2/2020
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2543-8

Other articles of this Issue 2/2020

Quantum Information Processing 2/2020 Go to the issue