Skip to main content
Top
Published in: Designs, Codes and Cryptography 9/2019

02-01-2019

Quantum encryption and generalized Shannon impossibility

Authors: Ching-Yi Lai, Kai-Min Chung

Published in: Designs, Codes and Cryptography | Issue 9/2019

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The famous Shannon impossibility result says that any encryption scheme with perfect secrecy requires a secret key at least as long as the message. In this paper we provide its quantum analogue with imperfect secrecy and imperfect correctness. We also give a systematic study of information-theoretically secure quantum encryption with two secrecy definitions. We show that the weaker one implies the stronger but with a security loss in d, where d is the dimension of the encrypted quantum system. This is good enough if the target secrecy error is of \(o(d^{-1})\).
Footnotes
1
Note that the righthand side of Eq. (41) in [5] should be \((1-\epsilon )^2\) and hence there should be an additional factor of 2 in front of the term \(\log (1-\epsilon )\) in the lower bound.
 
Literature
1.
go back to reference Ambainis A., Mosca M., Tapp A., Wolf R.D.: Private quantum channels. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 547–553 (2000). Ambainis A., Mosca M., Tapp A., Wolf R.D.: Private quantum channels. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 547–553 (2000).
2.
go back to reference Ambainis A., Smith A.: Small pseudo-random families of matrices: derandomizing approximate quantum encryption. In: Proceedings of RANDOM, Series. Lecture Notes in Computer Science, pp. 249–260. Springer, Berlin (2004). Ambainis A., Smith A.: Small pseudo-random families of matrices: derandomizing approximate quantum encryption. In: Proceedings of RANDOM, Series. Lecture Notes in Computer Science, pp. 249–260. Springer, Berlin (2004).
3.
go back to reference Boykin P.O., Roychowdhury V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003).CrossRef Boykin P.O., Roychowdhury V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003).CrossRef
5.
go back to reference Desrosiers S.P., Dupuis F.: Quantum entropic security and approximate quantum encryption. IEEE Trans. Inf. Theory 56(7), 3455–3464 (2010).MathSciNetMATHCrossRef Desrosiers S.P., Dupuis F.: Quantum entropic security and approximate quantum encryption. IEEE Trans. Inf. Theory 56(7), 3455–3464 (2010).MathSciNetMATHCrossRef
6.
go back to reference Dickinson P.A., Nayak A.: Approximate randomization of quantum states with fewer bits of key. AIP Conference Proceedings 864(1), 18–36 (2006).MATHCrossRef Dickinson P.A., Nayak A.: Approximate randomization of quantum states with fewer bits of key. AIP Conference Proceedings 864(1), 18–36 (2006).MATHCrossRef
8.
go back to reference Dodis Y.: Shannon impossibility, revisited. In: A Smith (ed.) Information Theoretic Security: 6th International Conference, ICITS, Montreal, QC, Canada, August 15–17, pp. 100–110, 2012. Springer, Berlin (2012). Dodis Y.: Shannon impossibility, revisited. In: A Smith (ed.) Information Theoretic Security: 6th International Conference, ICITS, Montreal, QC, Canada, August 15–17, pp. 100–110, 2012. Springer, Berlin (2012).
9.
go back to reference Dodis Y., Smith A.: Entropic security and the encryption of high entropy messages. In: Proceedings of the Second International Conference on Theory of Cryptography, Series. TCC’05, pp. 556–577. Springer, Berlin (2005). Dodis Y., Smith A.: Entropic security and the encryption of high entropy messages. In: Proceedings of the Second International Conference on Theory of Cryptography, Series. TCC’05, pp. 556–577. Springer, Berlin (2005).
10.
go back to reference Fuchs C.A., van de Graaf J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45(4), 1216–1227 (1999).MathSciNetMATHCrossRef Fuchs C.A., van de Graaf J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45(4), 1216–1227 (1999).MathSciNetMATHCrossRef
12.
go back to reference Hayden P., Leung D., Shor P.W., Winter A.: Randomizing quantum states: constructions and applications. Commun. Math. Phys. 250(2), 371–391 (2004).MathSciNetMATHCrossRef Hayden P., Leung D., Shor P.W., Winter A.: Randomizing quantum states: constructions and applications. Commun. Math. Phys. 250(2), 371–391 (2004).MathSciNetMATHCrossRef
13.
go back to reference Hughston L.P., Jozsa R., Wootters W.K.: A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183(1), 14–18 (1993).MathSciNetCrossRef Hughston L.P., Jozsa R., Wootters W.K.: A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183(1), 14–18 (1993).MathSciNetCrossRef
14.
go back to reference Iwamoto M., Ohta K.: Security notions for information theoretically secure encryptions. In: 2011 IEEE International Symposium on Information Theory Proceedings, pp. 1777–1781 (2011). Iwamoto M., Ohta K.: Security notions for information theoretically secure encryptions. In: 2011 IEEE International Symposium on Information Theory Proceedings, pp. 1777–1781 (2011).
15.
go back to reference Iwamoto M., Ohta K., Shikata J.: Security formalizations and their relationships for encryption and key agreement in information-theoretic cryptography. IEEE Trans. Inf. Theory 64(1), 654–685 (2018).MathSciNetMATHCrossRef Iwamoto M., Ohta K., Shikata J.: Security formalizations and their relationships for encryption and key agreement in information-theoretic cryptography. IEEE Trans. Inf. Theory 64(1), 654–685 (2018).MathSciNetMATHCrossRef
16.
go back to reference Jain R.: Resource requirements of private quantum channels and consequences for oblivious remote state preparation. J. Cryptol. 25(1), 1–13 (2012).MathSciNetMATHCrossRef Jain R.: Resource requirements of private quantum channels and consequences for oblivious remote state preparation. J. Cryptol. 25(1), 1–13 (2012).MathSciNetMATHCrossRef
17.
go back to reference Konig R., Renner R., Schaffner C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55(9), 4337–4347 (2009).MathSciNetMATHCrossRef Konig R., Renner R., Schaffner C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55(9), 4337–4347 (2009).MathSciNetMATHCrossRef
18.
go back to reference Lai C.-Y., Chung K.-M.: On statistically-secure quantum homomorphic encryption. Quant. Inf. Comput. 18(9&10), 0785–0794 (2018).MathSciNet Lai C.-Y., Chung K.-M.: On statistically-secure quantum homomorphic encryption. Quant. Inf. Comput. 18(9&10), 0785–0794 (2018).MathSciNet
20.
go back to reference Nayak A., Sen P.: Invertible quantum operations and perfect encryption of quantum states. Quant. Inf. Comput. 7(1), 103–110 (2007).MATH Nayak A., Sen P.: Invertible quantum operations and perfect encryption of quantum states. Quant. Inf. Comput. 7(1), 103–110 (2007).MATH
21.
go back to reference Ouyang Y., Tan S.-H., Fitzsimons J.F.: Quantum homomorphic encryption from quantum codes. Phys. Rev. A 98, 042334 (2018).CrossRef Ouyang Y., Tan S.-H., Fitzsimons J.F.: Quantum homomorphic encryption from quantum codes. Phys. Rev. A 98, 042334 (2018).CrossRef
22.
Metadata
Title
Quantum encryption and generalized Shannon impossibility
Authors
Ching-Yi Lai
Kai-Min Chung
Publication date
02-01-2019
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 9/2019
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-018-00597-3

Other articles of this Issue 9/2019

Designs, Codes and Cryptography 9/2019 Go to the issue

Premium Partner