Skip to main content
Top
Published in: Quantum Information Processing 2/2017

01-02-2017

Quantum phase transition in the Dzyaloshinskii–Moriya interaction with inhomogeneous magnetic field: Geometric approach

Authors: G. Najarbashi, B. Seifi

Published in: Quantum Information Processing | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we generalize the results of Oh (Phys Lett A 373:644–647, 2009) to Dzyaloshinskii–Moriya model under non-uniform external magnetic field to investigate the relation between entanglement, geometric phase (or Berry phase) and quantum phase transition. We use quaternionic representation to relate the geometric phase to the quantum phase transition. For small values of DM parameter, the Berry phase is more appropriate than the concurrence measure, while for large values, the concurrence is a good indicator to show the phase transition. On the other hand, by increasing the DM interaction the phase transition occurs for large values of anisotropy parameter. In addition, for small values of magnetic field the concurrence measure is appropriate indicator for quantum phase transition, but for large values of magnetic field the Berry phase shows a sharp changes in the phase transition points. The results show that the Berry phase and concurrence form a complementary system from phase transition point of view.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sachdev, S.: Quantum Phase Transitions, 2nd edn. Cambridge University Press, Cambridge (2011)CrossRefMATH Sachdev, S.: Quantum Phase Transitions, 2nd edn. Cambridge University Press, Cambridge (2011)CrossRefMATH
2.
go back to reference Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. University of Illinois, Urbana-Champaign (1992)MATH Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. University of Illinois, Urbana-Champaign (1992)MATH
4.
7.
go back to reference Shapere, A., Wilczek, F.: Geometric Phases in Physics. World Scientific, Singapore (1989)MATH Shapere, A., Wilczek, F.: Geometric Phases in Physics. World Scientific, Singapore (1989)MATH
8.
go back to reference Najarbashi, G., Ahadpour, S., Fasihi, M.A., Tavakoli, Y.: Geometry of a two-qubit state and intertwining quaternionic conformal mapping under local unitary transformations. J. Phys. A Math. Theor. 40, 6481–6489 (2007)ADSMathSciNetCrossRefMATH Najarbashi, G., Ahadpour, S., Fasihi, M.A., Tavakoli, Y.: Geometry of a two-qubit state and intertwining quaternionic conformal mapping under local unitary transformations. J. Phys. A Math. Theor. 40, 6481–6489 (2007)ADSMathSciNetCrossRefMATH
9.
go back to reference Najarbashi, G., Seifi, B., Mirzaei, S.: Two- and three-qubit geometry, quaternionic and octonionic conformal maps, and intertwining stereographic projection. Quantum Inf. Process. 15, 509528 (2016)MathSciNetCrossRefMATH Najarbashi, G., Seifi, B., Mirzaei, S.: Two- and three-qubit geometry, quaternionic and octonionic conformal maps, and intertwining stereographic projection. Quantum Inf. Process. 15, 509528 (2016)MathSciNetCrossRefMATH
10.
12.
go back to reference Oh, S., Huang, Z., Peskin, U., Kais, S.: Entanglement, Berry phases, and level crossings for the atomic Breit–Rabi Hamiltonian. Phys. Rev. A 78, 062106 (2008)ADSMathSciNetCrossRef Oh, S., Huang, Z., Peskin, U., Kais, S.: Entanglement, Berry phases, and level crossings for the atomic Breit–Rabi Hamiltonian. Phys. Rev. A 78, 062106 (2008)ADSMathSciNetCrossRef
13.
go back to reference Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefMATH Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefMATH
14.
go back to reference Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefMATH Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefMATH
16.
go back to reference Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A. 59, 156 (1999)ADSCrossRef Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A. 59, 156 (1999)ADSCrossRef
17.
go back to reference Schrödinger, E.: Probability relations between separated systems. Proc. Camb. Phil. Soc. 31, 555 (1935)ADSCrossRefMATH Schrödinger, E.: Probability relations between separated systems. Proc. Camb. Phil. Soc. 31, 555 (1935)ADSCrossRefMATH
18.
go back to reference Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSCrossRefMATH Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSCrossRefMATH
19.
go back to reference Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964) Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)
20.
go back to reference Maleki, Y., Khashami, F., Mousavi, Y.: Entanglement of three-spin states in the context of SU(2) coherent states. Int. J. Theor. Phys. 54, 210 (2015)CrossRefMATH Maleki, Y., Khashami, F., Mousavi, Y.: Entanglement of three-spin states in the context of SU(2) coherent states. Int. J. Theor. Phys. 54, 210 (2015)CrossRefMATH
21.
go back to reference Angelakis, D.G., Christandl, M., Ekert, A., Kay, A., Kulik, S.: Quantum Information Processing: From Theory to Experiment, vol. 199. Computer and Systems Sciences, vol. 199. IOS Press, NATO Science Series, Amsterdam (2006)MATH Angelakis, D.G., Christandl, M., Ekert, A., Kay, A., Kulik, S.: Quantum Information Processing: From Theory to Experiment, vol. 199. Computer and Systems Sciences, vol. 199. IOS Press, NATO Science Series, Amsterdam (2006)MATH
22.
go back to reference Gunlycke, D., Kendon, V.M., Vedral, V., Bose, S.: Thermal concurrence mixing in a one-dimensional Ising model. Phys. Rev. A 64, 042302 (2001)ADSCrossRef Gunlycke, D., Kendon, V.M., Vedral, V., Bose, S.: Thermal concurrence mixing in a one-dimensional Ising model. Phys. Rev. A 64, 042302 (2001)ADSCrossRef
23.
go back to reference Yang, Z., Yang, L., Dai, J., Xiang, T.: Rigorous solution of the spin-1 quantum ising model with single-ion anisotropy. Phys. Rev. Lett. 100, 067203 (2008)ADSCrossRef Yang, Z., Yang, L., Dai, J., Xiang, T.: Rigorous solution of the spin-1 quantum ising model with single-ion anisotropy. Phys. Rev. Lett. 100, 067203 (2008)ADSCrossRef
24.
go back to reference Kamta, G.L., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)ADSCrossRef Kamta, G.L., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)ADSCrossRef
25.
go back to reference Wang, X.: Thermal and ground-state entanglement in Heisenberg XX qubit rings. Phys. Rev. A 66, 034302 (2002)ADSCrossRef Wang, X.: Thermal and ground-state entanglement in Heisenberg XX qubit rings. Phys. Rev. A 66, 034302 (2002)ADSCrossRef
26.
go back to reference Sun, Y., Chen, Y., Chen, H.: Thermal entanglement in the two-qubit Heisenberg XY model under a nonuniform external magnetic field. Phys. Rev. A 68, 044301 (2003)ADSCrossRef Sun, Y., Chen, Y., Chen, H.: Thermal entanglement in the two-qubit Heisenberg XY model under a nonuniform external magnetic field. Phys. Rev. A 68, 044301 (2003)ADSCrossRef
27.
go back to reference Kao, Z.C., Ng, J., Yeo, Y.: Three-qubit thermal entanglement via entanglement swapping on two-qubit Heisenberg XY chains. Phys. Rev. A 72, 062302 (2005)ADSCrossRef Kao, Z.C., Ng, J., Yeo, Y.: Three-qubit thermal entanglement via entanglement swapping on two-qubit Heisenberg XY chains. Phys. Rev. A 72, 062302 (2005)ADSCrossRef
28.
go back to reference Zhu, S.L.: Scaling of geometric phases close to the quantum phase transition in the XY spin chain. Phys. Rev. Lett. 96, 077206 (2006)ADSCrossRef Zhu, S.L.: Scaling of geometric phases close to the quantum phase transition in the XY spin chain. Phys. Rev. Lett. 96, 077206 (2006)ADSCrossRef
29.
go back to reference Asoudeh, M., Karimipour, V.: Thermal entanglement of spins in an inhomogeneous magnetic field. Phys. Rev. A 71, 022308 (2005)ADSCrossRef Asoudeh, M., Karimipour, V.: Thermal entanglement of spins in an inhomogeneous magnetic field. Phys. Rev. A 71, 022308 (2005)ADSCrossRef
30.
go back to reference Zhang, G.F.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski–Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75, 034304 (2007)ADSCrossRef Zhang, G.F.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski–Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75, 034304 (2007)ADSCrossRef
31.
go back to reference Zhang, G.F., Li, S.S.: Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field. Phys. Rev. A 72, 034302 (2005)ADSCrossRef Zhang, G.F., Li, S.S.: Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field. Phys. Rev. A 72, 034302 (2005)ADSCrossRef
32.
go back to reference Kargarian, M., Jafari, R., Langari, A.: Renormalization of entanglement in the anisotropic Heisenberg (XXZ) model. Phys. Rev. A 77, 032346 (2008)ADSCrossRef Kargarian, M., Jafari, R., Langari, A.: Renormalization of entanglement in the anisotropic Heisenberg (XXZ) model. Phys. Rev. A 77, 032346 (2008)ADSCrossRef
33.
go back to reference Dzyaloshinsky, I.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)ADSCrossRef Dzyaloshinsky, I.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)ADSCrossRef
34.
go back to reference Moriya, T.: New mechanism of anisotropic super exchange interaction. Phys. Rev. Lett. 4, 228 (1960)ADSCrossRef Moriya, T.: New mechanism of anisotropic super exchange interaction. Phys. Rev. Lett. 4, 228 (1960)ADSCrossRef
35.
go back to reference Kheirandish, F., Akhtarshenas, S.J., Mohammadi, H.: Effect of spin–orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field. Phys. Rev. A 77, 042309 (2008)ADSCrossRef Kheirandish, F., Akhtarshenas, S.J., Mohammadi, H.: Effect of spin–orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field. Phys. Rev. A 77, 042309 (2008)ADSCrossRef
36.
go back to reference Wu, L.A., Lidar, D.A.: Universal quantum logic from Zeeman and anisotropic exchange interactions. Phys. Rev. A 66, 062314 (2002)ADSCrossRef Wu, L.A., Lidar, D.A.: Universal quantum logic from Zeeman and anisotropic exchange interactions. Phys. Rev. A 66, 062314 (2002)ADSCrossRef
38.
go back to reference Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998) Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
39.
go back to reference Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997) Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)
40.
go back to reference Vedral, V.: Modern Foundations of Quantum Optics. University of Leeds, Imperial College Press, Leeds (2005)CrossRefMATH Vedral, V.: Modern Foundations of Quantum Optics. University of Leeds, Imperial College Press, Leeds (2005)CrossRefMATH
Metadata
Title
Quantum phase transition in the Dzyaloshinskii–Moriya interaction with inhomogeneous magnetic field: Geometric approach
Authors
G. Najarbashi
B. Seifi
Publication date
01-02-2017
Publisher
Springer US
Published in
Quantum Information Processing / Issue 2/2017
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-016-1505-7

Other articles of this Issue 2/2017

Quantum Information Processing 2/2017 Go to the issue