Skip to main content
Top
Published in: Quantum Information Processing 11/2023

01-11-2023

Quantum teleportation based on non-maximally entangled graph states

Authors: Yi Ding, Yuzheng Wei, Zongyi Li, Min Jiang

Published in: Quantum Information Processing | Issue 11/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, the development of graph states has opened a bright prospect for the generation of multipartite entangled states. However, due to the influences of noises in the surroundings, the obtained graph states may not be maximally entangled, which have been rarely explored previously. In this paper, we first consider how to generate one particular graph state which is named as the non-maximally entangled graph state. Next, we analyze the properties of the non-maximally entangled graph states and introduce two different kinds of graph states according to the entanglement of the non-maximally entangled graph states. Finally, we demonstrate how to teleport arbitrary unknown single-qubit state by using the non-maximally graph states. Compared with previous teleportation protocol, it demonstrates higher efficiency and lower operational complexity. We expect that our works can provide a theoretical instruction for the future study of the graph states.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetMATHADS Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetMATHADS
2.
go back to reference Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15, 905–912 (2016)MathSciNetMATHADS Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15, 905–912 (2016)MathSciNetMATHADS
3.
go back to reference Luo, Y.H., Zhong, H.S., Erhard, M., et al.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 6 (2019) Luo, Y.H., Zhong, H.S., Erhard, M., et al.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 6 (2019)
4.
go back to reference Fu, F.X., Jiang, M.: Multihop nondestructive teleportation via different nonmaximally entangled channels. J. Opt. Soc. Am. B-Opt. Phys. 37, 233–243 (2020)ADS Fu, F.X., Jiang, M.: Multihop nondestructive teleportation via different nonmaximally entangled channels. J. Opt. Soc. Am. B-Opt. Phys. 37, 233–243 (2020)ADS
5.
go back to reference Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett. A 377, 2524–2530 (2013)MathSciNetMATHADS Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett. A 377, 2524–2530 (2013)MathSciNetMATHADS
6.
go back to reference Kang, Y.H., Xia, Y., Lu, P.M.: Effective scheme for preparation of a spin-qubit Greenberger–Horne–Zeilinger state and W state in a quantum-dot-microcavity system. J. Opt. Soc. Am. B-Opt. Phys. 32, 1323–1329 (2015)ADS Kang, Y.H., Xia, Y., Lu, P.M.: Effective scheme for preparation of a spin-qubit Greenberger–Horne–Zeilinger state and W state in a quantum-dot-microcavity system. J. Opt. Soc. Am. B-Opt. Phys. 32, 1323–1329 (2015)ADS
7.
go back to reference Gong, R.Z., Wei, Y.Z., Xue, S.B., et al.: Joint remote state preparation of an arbitrary multi-qudit state in a chain network. Quantum Inf. Process. 21, 341 (2022)MathSciNetMATHADS Gong, R.Z., Wei, Y.Z., Xue, S.B., et al.: Joint remote state preparation of an arbitrary multi-qudit state in a chain network. Quantum Inf. Process. 21, 341 (2022)MathSciNetMATHADS
8.
go back to reference Min, S.Q., Chen, H.Y., Gong, L.H.: Novel multi-party quantum key agreement protocol with G-like states and Bell states. Int. J. Theor. Phys. 57, 1811–1822 (2018)MathSciNetMATH Min, S.Q., Chen, H.Y., Gong, L.H.: Novel multi-party quantum key agreement protocol with G-like states and Bell states. Int. J. Theor. Phys. 57, 1811–1822 (2018)MathSciNetMATH
9.
go back to reference He, W.T., Wang, J., Zhang, T.T., et al.: High-efficiency three-party quantum key agreement protocol with quantum dense coding and Bell states. Int. J. Theor. Phys. 58, 2834–2846 (2019)MathSciNetMATH He, W.T., Wang, J., Zhang, T.T., et al.: High-efficiency three-party quantum key agreement protocol with quantum dense coding and Bell states. Int. J. Theor. Phys. 58, 2834–2846 (2019)MathSciNetMATH
10.
go back to reference He, Y.F., Pang, Y.B., Di, M.: Mutual authentication quantum key agreement protocol based on Bell states. Quantum Inf. Process. 21, 290 (2022)MathSciNetMATHADS He, Y.F., Pang, Y.B., Di, M.: Mutual authentication quantum key agreement protocol based on Bell states. Quantum Inf. Process. 21, 290 (2022)MathSciNetMATHADS
11.
go back to reference Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99, 140501 (2007)MathSciNetMATHADS Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99, 140501 (2007)MathSciNetMATHADS
12.
go back to reference Diamanti, E., Lo, H.K., Qi, B., et al.: Practical challenges in quantum key distribution. NPJ Quantum Inf. 2, 16025 (2016) Diamanti, E., Lo, H.K., Qi, B., et al.: Practical challenges in quantum key distribution. NPJ Quantum Inf. 2, 16025 (2016)
13.
go back to reference Zhang, Y.C., Chen, Z.Y., Pirandola, S., et al.: Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett. 125, 010502 (2020)ADS Zhang, Y.C., Chen, Z.Y., Pirandola, S., et al.: Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett. 125, 010502 (2020)ADS
14.
go back to reference Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)ADS Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)ADS
15.
go back to reference Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 5 (2013) Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 5 (2013)
16.
go back to reference Tomamichel, M., Lim, C.C.W., Gisin, N., et al.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 6 (2012) Tomamichel, M., Lim, C.C.W., Gisin, N., et al.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 6 (2012)
17.
go back to reference Pirandola, S., Andersen, U.L., Banchi, L., et al.: Advances in quantum cryptography. Adv. Opt. Photonics. 12, 1012–1236 (2020)ADS Pirandola, S., Andersen, U.L., Banchi, L., et al.: Advances in quantum cryptography. Adv. Opt. Photonics. 12, 1012–1236 (2020)ADS
18.
go back to reference Wang, K., Yu, X.-T., Lu, S.-L., et al.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev. A 89, 022329 (2014)ADS Wang, K., Yu, X.-T., Lu, S.-L., et al.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev. A 89, 022329 (2014)ADS
19.
20.
go back to reference Verma, V.: Bidirectional quantum teleportation by using two GHZ-states as the quantum channel. IEEE Commun. Lett. 25, 936–939 (2021) Verma, V.: Bidirectional quantum teleportation by using two GHZ-states as the quantum channel. IEEE Commun. Lett. 25, 936–939 (2021)
21.
go back to reference Shuai, S., Chen, N., Yan, B., et al.: Faithful multihop two-qubit transmission through GHZ-GHZ channel. Int. J. Theor. Phys. 60, 2488–2498 (2020)MathSciNetMATH Shuai, S., Chen, N., Yan, B., et al.: Faithful multihop two-qubit transmission through GHZ-GHZ channel. Int. J. Theor. Phys. 60, 2488–2498 (2020)MathSciNetMATH
22.
go back to reference Wang, M.T., Li, H.S.: Bidirectional quantum teleportation using a five-qubit cluster state as a quantum channel. Quantum Inf. Process. 21, 11 (2022)MathSciNetMATHADS Wang, M.T., Li, H.S.: Bidirectional quantum teleportation using a five-qubit cluster state as a quantum channel. Quantum Inf. Process. 21, 11 (2022)MathSciNetMATHADS
23.
go back to reference Fatahi, N., Naseri, M.: Quantum teleportation of a N-qubit entangled state by using a (N+1)-qubit cluster state. Quantum Inf. Process. 20, 10 (2021)MathSciNetMATH Fatahi, N., Naseri, M.: Quantum teleportation of a N-qubit entangled state by using a (N+1)-qubit cluster state. Quantum Inf. Process. 20, 10 (2021)MathSciNetMATH
24.
go back to reference Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870–3873 (2013)MathSciNetMATH Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870–3873 (2013)MathSciNetMATH
25.
go back to reference Li, D.F., Zheng, Y.D., Liu, X.F., et al.: Hierarchical quantum teleportation of arbitrary single-qubit state by using four-qubit cluster state. Int. J. Theor. Phys. 60, 1911–1919 (2021)MathSciNetMATH Li, D.F., Zheng, Y.D., Liu, X.F., et al.: Hierarchical quantum teleportation of arbitrary single-qubit state by using four-qubit cluster state. Int. J. Theor. Phys. 60, 1911–1919 (2021)MathSciNetMATH
27.
go back to reference Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two-particle state by two partial three-particle entangled W states. J. Opt. B-Quantum Semicl. Opt. 6, 106–109 (2004)MathSciNetADS Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two-particle state by two partial three-particle entangled W states. J. Opt. B-Quantum Semicl. Opt. 6, 106–109 (2004)MathSciNetADS
28.
go back to reference Adhikari, S.: Probabilistic teleportation of a single qubit: unearthing new W-class of states. J. Exp. Theor. Phys. 131, 375–384 (2020)ADS Adhikari, S.: Probabilistic teleportation of a single qubit: unearthing new W-class of states. J. Exp. Theor. Phys. 131, 375–384 (2020)ADS
29.
go back to reference Li, Y.H., Nie, L.P.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 52, 1630–1634 (2013)MathSciNet Li, Y.H., Nie, L.P.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 52, 1630–1634 (2013)MathSciNet
30.
go back to reference Zou, Z.Z., Yu, X.T., Gong, Y.X., et al.: Multihop teleportation of two-qubit state via the composite GHZ-Bell channel. Phys. Lett. A 381, 76–81 (2017)MATHADS Zou, Z.Z., Yu, X.T., Gong, Y.X., et al.: Multihop teleportation of two-qubit state via the composite GHZ-Bell channel. Phys. Lett. A 381, 76–81 (2017)MATHADS
31.
go back to reference Yang, Y.-L., Yang, Y.-G., Zhou, Y.-H., et al.: Efficient quantum multi-hop communication based on Greenberger–Horne–Zeilinger states and Bell states. Quantum Inf. Process. 20, 189 (2021)MathSciNetMATHADS Yang, Y.-L., Yang, Y.-G., Zhou, Y.-H., et al.: Efficient quantum multi-hop communication based on Greenberger–Horne–Zeilinger states and Bell states. Quantum Inf. Process. 20, 189 (2021)MathSciNetMATHADS
32.
go back to reference Yuan, H., Zhang, G., Xie, C.M., et al.: Improving the scheme of bidirectional controlled teleportation with a five-qubit composite GHZ-Bell state. Laser Phys. Lett. 19, 6 (2022) Yuan, H., Zhang, G., Xie, C.M., et al.: Improving the scheme of bidirectional controlled teleportation with a five-qubit composite GHZ-Bell state. Laser Phys. Lett. 19, 6 (2022)
33.
go back to reference Zhan, H.T., Yu, X.T., Xiong, P.Y., et al.: Multi-hop teleportation based on W state and EPR pairs. Chin. Phys. B 25, 5 (2016) Zhan, H.T., Yu, X.T., Xiong, P.Y., et al.: Multi-hop teleportation based on W state and EPR pairs. Chin. Phys. B 25, 5 (2016)
34.
go back to reference Zhang, Z.H., Wang, J.W., Sun, M.: Multihop teleportation via the composite of asymmetric W state and Bell state. Int. J. Theor. Phys. 57, 3605–3620 (2018)MathSciNetMATH Zhang, Z.H., Wang, J.W., Sun, M.: Multihop teleportation via the composite of asymmetric W state and Bell state. Int. J. Theor. Phys. 57, 3605–3620 (2018)MathSciNetMATH
35.
go back to reference Zhang, Q., Goebel, A., Wagenknecht, C., et al.: Experimental quantum teleportation of a two-qubit composite system. Nat. Phys. 2, 678–682 (2006) Zhang, Q., Goebel, A., Wagenknecht, C., et al.: Experimental quantum teleportation of a two-qubit composite system. Nat. Phys. 2, 678–682 (2006)
36.
go back to reference Ma, X.S., Herbst, T., Scheidl, T., et al.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012)ADS Ma, X.S., Herbst, T., Scheidl, T., et al.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012)ADS
37.
go back to reference Bhatia, P.S.: Experimental tripartite quantum state sharing and perfect teleportation of the two-qubit photonic state using genuinely entangled multipartite states. J. Opt. Soc. Am. B-Opt. Phys. 31, 154–163 (2014)ADS Bhatia, P.S.: Experimental tripartite quantum state sharing and perfect teleportation of the two-qubit photonic state using genuinely entangled multipartite states. J. Opt. Soc. Am. B-Opt. Phys. 31, 154–163 (2014)ADS
38.
go back to reference Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light-Sci. Appl. 5, 5 (2016) Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light-Sci. Appl. 5, 5 (2016)
39.
go back to reference Barasinski, A., Cernoch, A., Lemr, K.: Demonstration of controlled quantum teleportation for discrete variables on linear optical devices. Phys. Rev. Lett. 122, 6 (2019)MathSciNet Barasinski, A., Cernoch, A., Lemr, K.: Demonstration of controlled quantum teleportation for discrete variables on linear optical devices. Phys. Rev. Lett. 122, 6 (2019)MathSciNet
40.
go back to reference Hu, X.M., Zhang, C., Liu, B.H., et al.: Experimental high-dimensional quantum teleportation. Phys. Rev. Lett. 125, 230501 (2020)ADS Hu, X.M., Zhang, C., Liu, B.H., et al.: Experimental high-dimensional quantum teleportation. Phys. Rev. Lett. 125, 230501 (2020)ADS
41.
go back to reference Ru, S.A., An, M., Yang, Y., et al.: Quantum state transfer between two photons with polarization and orbital angular momentum via quantum teleportation technology. Phys. Rev. A 103, 7 (2021) Ru, S.A., An, M., Yang, Y., et al.: Quantum state transfer between two photons with polarization and orbital angular momentum via quantum teleportation technology. Phys. Rev. A 103, 7 (2021)
42.
go back to reference Liu, X.F., Li, D.F., Zheng, Y.D., et al.: Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state. Chin. Phys. B 31, 6 (2022) Liu, X.F., Li, D.F., Zheng, Y.D., et al.: Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state. Chin. Phys. B 31, 6 (2022)
43.
go back to reference Zhang, H.R., Sun, Z., Qi, R.Y., et al.: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light-Sci. Appl. 11, 83 (2022)ADS Zhang, H.R., Sun, Z., Qi, R.Y., et al.: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light-Sci. Appl. 11, 83 (2022)ADS
44.
go back to reference Sisodia, M., Shukla, A., Thapliyal, K., et al.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inf. Process. 16, 19 (2017)MathSciNet Sisodia, M., Shukla, A., Thapliyal, K., et al.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inf. Process. 16, 19 (2017)MathSciNet
45.
46.
go back to reference Bell, B.A., Herrera-Marti, D.A., Tame, M.S., et al.: Experimental demonstration of a graph state quantum error-correction code. Nat. Commun. 5, 3658 (2014)ADS Bell, B.A., Herrera-Marti, D.A., Tame, M.S., et al.: Experimental demonstration of a graph state quantum error-correction code. Nat. Commun. 5, 3658 (2014)ADS
47.
go back to reference Liao, P.C., Sanders, B.C., Feder, D.L.: Topological graph states and quantum error-correction codes. Phys. Rev. A 105, 042418 (2022)MathSciNetADS Liao, P.C., Sanders, B.C., Feder, D.L.: Topological graph states and quantum error-correction codes. Phys. Rev. A 105, 042418 (2022)MathSciNetADS
48.
go back to reference Vandermolen, R.R., Wright, D.: Graph-theoretic approach to quantum error correction. Phys. Rev. A 105, 032450 (2022)MathSciNetADS Vandermolen, R.R., Wright, D.: Graph-theoretic approach to quantum error correction. Phys. Rev. A 105, 032450 (2022)MathSciNetADS
49.
50.
go back to reference Keet, A., Fortescue, B., Markham, D., et al.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82, 11 (2010) Keet, A., Fortescue, B., Markham, D., et al.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82, 11 (2010)
51.
go back to reference Sarvepalli, P.: Nonthreshold quantum secret-sharing schemes in the graph-state formalism. Phys. Rev. A 86, 042303 (2012)ADS Sarvepalli, P.: Nonthreshold quantum secret-sharing schemes in the graph-state formalism. Phys. Rev. A 86, 042303 (2012)ADS
52.
go back to reference Wu, Y.D., Cai, R.Z., He, G.Q., et al.: Quantum secret sharing with continuous variable graph state. Quantum Inf. Process. 13, 1085–1102 (2014)MathSciNetMATHADS Wu, Y.D., Cai, R.Z., He, G.Q., et al.: Quantum secret sharing with continuous variable graph state. Quantum Inf. Process. 13, 1085–1102 (2014)MathSciNetMATHADS
53.
go back to reference Cavalcanti, D., Chaves, R., Aolita, L., et al.: Open-system dynamics of graph-state entanglement. Phys. Rev. Lett. 103, 030502 (2009)ADS Cavalcanti, D., Chaves, R., Aolita, L., et al.: Open-system dynamics of graph-state entanglement. Phys. Rev. Lett. 103, 030502 (2009)ADS
54.
go back to reference Xue, P.: Spin-squeezing property of weighted graph states. Phys. Rev. A 86, 023812 (2012)ADS Xue, P.: Spin-squeezing property of weighted graph states. Phys. Rev. A 86, 023812 (2012)ADS
55.
go back to reference Peng, X.: Improved frequency standard via weighted graph states. Chin. Phys. B 21, 100306 (2012) Peng, X.: Improved frequency standard via weighted graph states. Chin. Phys. B 21, 100306 (2012)
56.
go back to reference Meignant, C., Markham, D., Grosshans, F.: Distributing graph states over arbitrary quantum networks. Phys. Rev. A 100, 052333 (2019)MathSciNetADS Meignant, C., Markham, D., Grosshans, F.: Distributing graph states over arbitrary quantum networks. Phys. Rev. A 100, 052333 (2019)MathSciNetADS
57.
go back to reference Raina, A., Garani, S.S.: Recovery from an eavesdropping attack on a qubit of a graph state. Quantum Inf. Process. 18, 274 (2019)MathSciNetMATHADS Raina, A., Garani, S.S.: Recovery from an eavesdropping attack on a qubit of a graph state. Quantum Inf. Process. 18, 274 (2019)MathSciNetMATHADS
58.
go back to reference Gyongyosi, L., Imre, S.: Decentralized base-graph routing for the quantum internet. Phys. Rev. A 98, 022310 (2018)ADS Gyongyosi, L., Imre, S.: Decentralized base-graph routing for the quantum internet. Phys. Rev. A 98, 022310 (2018)ADS
59.
go back to reference Hahn, F., Pappa, A., Eisert, J.: Quantum network routing and local complementation. NPJ Quantum Inf. 5, 76 (2019)ADS Hahn, F., Pappa, A., Eisert, J.: Quantum network routing and local complementation. NPJ Quantum Inf. 5, 76 (2019)ADS
60.
go back to reference Zhang, J., Braunstein, S.L.: Continuous-variable gaussian analog of cluster states. Phys. Rev. A 73, 032318 (2006)ADS Zhang, J., Braunstein, S.L.: Continuous-variable gaussian analog of cluster states. Phys. Rev. A 73, 032318 (2006)ADS
61.
go back to reference Van Loock, P., Weedbrook, C., Gu, M.: Building gaussian cluster states by linear optics. Phys. Rev. A 76, 032321 (2007)ADS Van Loock, P., Weedbrook, C., Gu, M.: Building gaussian cluster states by linear optics. Phys. Rev. A 76, 032321 (2007)ADS
62.
go back to reference Ren, L.J., He, G.Q., Zeng, G.H.: Universal teleportation via continuous-variable graph states. Phys. Rev. A 78, 042302 (2008)MathSciNetMATHADS Ren, L.J., He, G.Q., Zeng, G.H.: Universal teleportation via continuous-variable graph states. Phys. Rev. A 78, 042302 (2008)MathSciNetMATHADS
63.
go back to reference Huang, C.Y., Yu, I.C., Lin, F.L., et al.: Deterministic dense coding and faithful teleportation with multipartite graph states. Phys. Rev. A. 79 (2009) Huang, C.Y., Yu, I.C., Lin, F.L., et al.: Deterministic dense coding and faithful teleportation with multipartite graph states. Phys. Rev. A. 79 (2009)
64.
go back to reference Huang, C.Y., Yu, I.C., Lin, F.L., et al.: Deterministic dense coding and faithful teleportation with multipartite graph states. Phys. Rev. A 79, 052306 (2009)ADS Huang, C.Y., Yu, I.C., Lin, F.L., et al.: Deterministic dense coding and faithful teleportation with multipartite graph states. Phys. Rev. A 79, 052306 (2009)ADS
65.
go back to reference Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)ADS Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)ADS
66.
go back to reference Piao, M.Z., Wang, H.F., Shao, X.Q., et al.: Generation of multi-qubit graph states via spin networks. Int. J. Theor. Phys. 50, 3033–3042 (2011)MathSciNetMATH Piao, M.Z., Wang, H.F., Shao, X.Q., et al.: Generation of multi-qubit graph states via spin networks. Int. J. Theor. Phys. 50, 3033–3042 (2011)MathSciNetMATH
67.
go back to reference Akhound, A., Haddadi, S., Motlagh, M.A.C.: Analyzing the entanglement properties of graph states with generalized concurrence. Mod. Phys. Lett. B. 33, 7 (2019) Akhound, A., Haddadi, S., Motlagh, M.A.C.: Analyzing the entanglement properties of graph states with generalized concurrence. Mod. Phys. Lett. B. 33, 7 (2019)
68.
go back to reference Van Den Nest, M., Dehaene, J., De Moor, B.: Graphical description of the action of local Clifford transformations on graph states. Phys. Rev. A 69, 022316 (2004)ADS Van Den Nest, M., Dehaene, J., De Moor, B.: Graphical description of the action of local Clifford transformations on graph states. Phys. Rev. A 69, 022316 (2004)ADS
69.
go back to reference Yuan, H., Liu, Y.M., Zhang, W., et al.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B-At. Mol. Opt. Phys. 41, 6 (2008) Yuan, H., Liu, Y.M., Zhang, W., et al.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B-At. Mol. Opt. Phys. 41, 6 (2008)
70.
go back to reference Xu, G., Wang, C., Yang, Y.X.: Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state. Quantum Inf. Process. 13, 43–57 (2014)MATHADS Xu, G., Wang, C., Yang, Y.X.: Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state. Quantum Inf. Process. 13, 43–57 (2014)MATHADS
Metadata
Title
Quantum teleportation based on non-maximally entangled graph states
Authors
Yi Ding
Yuzheng Wei
Zongyi Li
Min Jiang
Publication date
01-11-2023
Publisher
Springer US
Published in
Quantum Information Processing / Issue 11/2023
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-023-04157-0

Other articles of this Issue 11/2023

Quantum Information Processing 11/2023 Go to the issue