Skip to main content
Top

2018 | OriginalPaper | Chapter

4. Qubit Description of Functions and Structures for Service Computing Synthesis

Authors : Ivan Hahanov, Igor Iemelianov, Mykhailo Liubarskyi, Vladimir Hahanov

Published in: Cyber Physical Computing for IoT-driven Services

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Qubit models for defining structures and functionalities are developed to improve the performance of the analysis of digital devices by increasing the dimensions of the data and memory structures. The basic concepts, terminology, and definitions necessary for the implementation of quantum computation in the practice of modeling computer structures are introduced. Examples proving the efficiency of qubit data structures for parallel operations on the data are represented. “Quantum” data structures for synthesis of digital systems based on transactions between addressable memory components to implement any functionality are also proposed. A new approach of logic function minimization for synthesis of digital systems is proposed. It uses a vector form (quantum) of combinational and sequential structure description for implementation in memory elements. This approach differs markedly from the common synthesis theory of discrete devices based on truth tables of components. It is based on an opportunity to apply quantum or qubit data structures (Nielsen and Chuang, Quantum computation and quantum information. Cambridge University Press, 2010; Whitney, Practical fault tolerance for quantum circuits. PhD dissertation. University of California, Berkeley, 2009; Nfrfhara, Quantum computing. An overview. Kinki University, Higashi-Osaka, 2010; Kurosh, The course of higher algebra. Publishing House Nauka, Moscow, 1968; Gorbatov, Basics of discrete mathematics. Higher School, Moscow, 1986) in modern computers when making calculating processes with the purpose of unary coding states of input, internal and output variables, and also the technology of qubit vector implementation in FPGA memory elements, which realize combinational and sequential primitives. The use of quantum memory-only-based models for describing digital components in computer systems design would allow researcher to increase yield, enhance the reliability of computers, make the process of design and production of devices cheaper, and also provide remote and online human-free repairs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nielsen, M.A., & Chuang, I.L. (2010). Quantum computation and quantum information. Cambridge University Press. Nielsen, M.A., & Chuang, I.L. (2010). Quantum computation and quantum information. Cambridge University Press.
2.
go back to reference Whitney, M.G. (2009). Practical fault tolerance for quantum circuits. PhD dissertation. University of California, Berkeley. Whitney, M.G. (2009). Practical fault tolerance for quantum circuits. PhD dissertation. University of California, Berkeley.
3.
go back to reference Nfrfhara, M. (2010). Quantum computing. An overview. Higashi-Osaka: Kinki University. Nfrfhara, M. (2010). Quantum computing. An overview. Higashi-Osaka: Kinki University.
4.
go back to reference Kurosh, A.G. (1968). The course of higher algebra. Moscow: Publishing House Nauka. Kurosh, A.G. (1968). The course of higher algebra. Moscow: Publishing House Nauka.
5.
go back to reference Gorbatov, V.A. (1986). Basics of discrete mathematics. Moscow: Higher School. Gorbatov, V.A. (1986). Basics of discrete mathematics. Moscow: Higher School.
6.
go back to reference Hahanov, V.I., Litvinova, E.I., Chumachenko, S.V., et al. (2012). Qubit model for solving the coverage problem. In: Proc. of IEEE East-West Design and Test Symposium, 2012. Hahanov, V.I., Litvinova, E.I., Chumachenko, S.V., et al. (2012). Qubit model for solving the coverage problem. In: Proc. of IEEE East-West Design and Test Symposium, 2012.
7.
go back to reference Hahanov, V.I., Gharibi, W., Litvinova, E.I., Shkil, A.S. (2015). Qubit data structures of computing devices. Electronic Modeling Journal, 1, 76–99. Hahanov, V.I., Gharibi, W., Litvinova, E.I., Shkil, A.S. (2015). Qubit data structures of computing devices. Electronic Modeling Journal, 1, 76–99.
8.
go back to reference Hahanov, V.I., Bani Amer, T., Chumachenko, S.V., Litvinova, E.I. (2015). Qubit technology for analysis and diagnosis of digital devices. Electronic modeling Journal, 37(3), 17–40. Hahanov, V.I., Bani Amer, T., Chumachenko, S.V., Litvinova, E.I. (2015). Qubit technology for analysis and diagnosis of digital devices. Electronic modeling Journal, 37(3), 17–40.
9.
go back to reference Hahanov, V., Gharibi, W., Iemelianov, I., Shcherbin, D. (2015). “Quantum” processor for digital systems analysis. In: Proceedings of IEEE East-West Design & Test Symposium, 2015. Hahanov, V., Gharibi, W., Iemelianov, I., Shcherbin, D. (2015). “Quantumprocessor for digital systems analysis. In: Proceedings of IEEE East-West Design & Test Symposium, 2015.
10.
go back to reference Metodi, T., & Chong, F. (2006). Quantum computing for computer architects. Synthesis Lectures on Computer Architecture. Morgan & Claypool. Metodi, T., & Chong, F. (2006). Quantum computing for computer architects. Synthesis Lectures on Computer Architecture. Morgan & Claypool.
11.
go back to reference Stig, S., & Suominen, K.-A. (2005). Quantum approach to informatics. John Wiley & Sons, Inc. Stig, S., & Suominen, K.-A. (2005). Quantum approach to informatics. John Wiley & Sons, Inc.
12.
go back to reference Hahanov, V., Bani Amer, T., Hahanov, I. (2015). MQT-model for Virtual Computer Design. In: Proc. of Microtechnology and Thermal Problems in Electronics (Microtherm), 2015. Hahanov, V., Bani Amer, T., Hahanov, I. (2015). MQT-model for Virtual Computer Design. In: Proc. of Microtechnology and Thermal Problems in Electronics (Microtherm), 2015.
13.
go back to reference Zorian, Y., & Shoukourian S. (2013). Test solutions for nanoscale systems-on-chip: Algorithms, methods and test infrastructure. In: Computer Science and Information Technologies (CSIT), 2013. Zorian, Y., & Shoukourian S. (2013). Test solutions for nanoscale systems-on-chip: Algorithms, methods and test infrastructure. In: Computer Science and Information Technologies (CSIT), 2013.
14.
go back to reference Zorian, Y., & Shoukourian, S. (2003). Embedded-memory test and repair: Infrastructure IP for SoC yield. IEEE Design & Test of computers Journal, 20(3), 58–66. Zorian, Y., & Shoukourian, S. (2003). Embedded-memory test and repair: Infrastructure IP for SoC yield. IEEE Design & Test of computers Journal, 20(3), 58–66.
15.
go back to reference Dugganapally, I.P., Watkins, S.E., Cooper, B. (2014). Multi-level, memory-based logic using CMOS technology. In: 2014 I.E. computer society annual symposium on VLSI (ISVLSI), 2014. Dugganapally, I.P., Watkins, S.E., Cooper, B. (2014). Multi-level, memory-based logic using CMOS technology. In: 2014 I.E. computer society annual symposium on VLSI (ISVLSI), 2014.
16.
go back to reference Yueh, W., Chatterjee, S., Zia, M., Bhunia, S., Mukhopadhyay, S. (2015). A memory-based logic block with optimized-for-read SRAM for energy-efficient reconfigurable computing fabric. IEEE transactions on circuits and systems II. Express Briefs Journal, 62(6), 593–597. Yueh, W., Chatterjee, S., Zia, M., Bhunia, S., Mukhopadhyay, S. (2015). A memory-based logic block with optimized-for-read SRAM for energy-efficient reconfigurable computing fabric. IEEE transactions on circuits and systems II. Express Briefs Journal, 62(6), 593–597.
17.
go back to reference Matsunaga, S., Hayakawa, J., Ikeda, S., Miura, K., Endoh, T., Ohno, H., Hanyu, T. (2009). MTJ-based nonvolatile logic-in-memory circuit, future prospects and issues. In: Design, Automation & Test in Europe Conference & Exhibition, 2009. Matsunaga, S., Hayakawa, J., Ikeda, S., Miura, K., Endoh, T., Ohno, H., Hanyu, T. (2009). MTJ-based nonvolatile logic-in-memory circuit, future prospects and issues. In: Design, Automation & Test in Europe Conference & Exhibition, 2009.
Metadata
Title
Qubit Description of Functions and Structures for Service Computing Synthesis
Authors
Ivan Hahanov
Igor Iemelianov
Mykhailo Liubarskyi
Vladimir Hahanov
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-54825-8_4