Skip to main content
Top
Published in: Multimedia Systems 5/2023

26-07-2021 | Special Issue Paper

Radar target recognition based on few-shot learning

Authors: Yue Yang, Zhuo Zhang, Wei Mao, Yang Li, Chengang Lv

Published in: Multimedia Systems | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the continuous development of target recognition technology, people pay more and more attention to the cost of sample generation, tag addition and network training. Active learning can choose as few samples as possible to achieve a better recognition effect. In this paper, a small number of the simulation generated radar cross-section time series are selected as the training data, combined with the least confidence and edge sampling, a sample selection method based on few-shot learning is proposed. The effectiveness of the method is verified by the target type recognition test in multi time radar cross-section time series. Using the algorithm in this paper, 10 kinds of trajectory data are selected from all 19 kinds of trajectory data, and the training model is tested, which can achieve similar results with 19 kinds of trajectory data training model. Compared with the random selection method, the accuracy is improved by 4–10% in different time lengths.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Knott, E. F., Schaeffer, J. F., Tulley M T.: Radar cross section[M]. SciTech Publishing (2004) Knott, E. F., Schaeffer, J. F., Tulley M T.: Radar cross section[M]. SciTech Publishing (2004)
2.
go back to reference Iwaszczuk, K., Heiselberg, H., Jepsen, P.U.: Terahertz radar cross section measurements[J]. Optics Express,18(25), 26399-26408 (2010) Iwaszczuk, K., Heiselberg, H., Jepsen, P.U.: Terahertz radar cross section measurements[J]. Optics Express,18(25), 26399-26408 (2010)
3.
go back to reference Huang, C.W., Lee, K.C.: Application of Ica technique to PCA based radar target recognition. Prog. Electromagn. Res. 105, 157–170 (2010)CrossRef Huang, C.W., Lee, K.C.: Application of Ica technique to PCA based radar target recognition. Prog. Electromagn. Res. 105, 157–170 (2010)CrossRef
4.
go back to reference Skolnik, M.: Radar Handbook Third Edition ser[J]. Electronics electrical engineering (2008) Skolnik, M.: Radar Handbook Third Edition ser[J]. Electronics electrical engineering (2008)
5.
go back to reference Wang, T., Bi, W., Zhao, Y., et al.: Radar target recognition algorithm based on RCS observation sequence—set-valued identification method[J]. Journal of Systems Science and Complexity, 29(3), 573-588 (2016) Wang, T., Bi, W., Zhao, Y., et al.: Radar target recognition algorithm based on RCS observation sequence—set-valued identification method[J]. Journal of Systems Science and Complexity, 29(3), 573-588 (2016)
7.
go back to reference Yang, J., Wang, C., Jiang, B., et al.: Visual perception enabled industry intelligence: state of the art, challenges and prospects. IEEE Trans. Industr. Inf. 17(3), 2204–2219 (2020)CrossRef Yang, J., Wang, C., Jiang, B., et al.: Visual perception enabled industry intelligence: state of the art, challenges and prospects. IEEE Trans. Industr. Inf. 17(3), 2204–2219 (2020)CrossRef
8.
go back to reference Yang, J., Wen, J., Wang, Y., et al.: Fog-based marine environmental information monitoring toward ocean of things. IEEE Internet Things J. 7(5), 4238–4247 (2019)CrossRef Yang, J., Wen, J., Wang, Y., et al.: Fog-based marine environmental information monitoring toward ocean of things. IEEE Internet Things J. 7(5), 4238–4247 (2019)CrossRef
9.
go back to reference Yang, J., Wen, J., Jiang, B., et al.: Blockchain-based sharing and tamper-proof framework of big data networking. IEEE Network 34(4), 62–67 (2020)CrossRef Yang, J., Wen, J., Jiang, B., et al.: Blockchain-based sharing and tamper-proof framework of big data networking. IEEE Network 34(4), 62–67 (2020)CrossRef
10.
go back to reference Li, Y., Nie, J., Chao, X.: Do we really need deep CNN for plant diseases identification? Comput. Electron. Agric. 178, 105803 (2020)CrossRef Li, Y., Nie, J., Chao, X.: Do we really need deep CNN for plant diseases identification? Comput. Electron. Agric. 178, 105803 (2020)CrossRef
11.
go back to reference Li, Y., Chao, X.: ANN-based continual classification in agriculture. Agriculture 10(5), 178 (2020)CrossRef Li, Y., Chao, X.: ANN-based continual classification in agriculture. Agriculture 10(5), 178 (2020)CrossRef
12.
go back to reference Sheng, X., Li, Y., Lian, M., et al.: Influence of coupling interference on arrayed eddy current displacement measurement. Mater. Eval. 74(12), 1675–1683 (2016) Sheng, X., Li, Y., Lian, M., et al.: Influence of coupling interference on arrayed eddy current displacement measurement. Mater. Eval. 74(12), 1675–1683 (2016)
13.
go back to reference Sehgal, B., Shekhawat, H.S., Jana, S.K.: Automatic target recognition using recurrent neural networks. 2019 International conference on range technology (ICORT). IEEE, (2019) Sehgal, B., Shekhawat, H.S., Jana, S.K.: Automatic target recognition using recurrent neural networks. 2019 International conference on range technology (ICORT). IEEE, (2019)
14.
go back to reference Bhattacharyya, K., Sarma, K.K.: Automatic target recognition (ATR) system using recurrent neural network (RNN) for pulse radar. Int. J. Comput. Applications 50(23), 33–39 (2012)CrossRef Bhattacharyya, K., Sarma, K.K.: Automatic target recognition (ATR) system using recurrent neural network (RNN) for pulse radar. Int. J. Comput. Applications 50(23), 33–39 (2012)CrossRef
15.
go back to reference Wengrowski, E., Purri, M., Dana, K., et al.: Deep convolutional neural networks as a method to classify rotating objects based on monostatic radar cross section. IET Radar Sonar Navig. 13(7), 1092–1100 (2019)CrossRef Wengrowski, E., Purri, M., Dana, K., et al.: Deep convolutional neural networks as a method to classify rotating objects based on monostatic radar cross section. IET Radar Sonar Navig. 13(7), 1092–1100 (2019)CrossRef
16.
go back to reference Li, Y., Yang, J.: Few-shot cotton pest recognition and terminal realization. Comput. Electron. Agric. 169, 105240 (2020)CrossRef Li, Y., Yang, J.: Few-shot cotton pest recognition and terminal realization. Comput. Electron. Agric. 169, 105240 (2020)CrossRef
17.
go back to reference Li, Y., Yang, J.: Meta-learning baselines and database for few-shot classification in agriculture. Comput. Electron. Agric. 182, 106055 (2021)CrossRef Li, Y., Yang, J.: Meta-learning baselines and database for few-shot classification in agriculture. Comput. Electron. Agric. 182, 106055 (2021)CrossRef
18.
go back to reference Li, Y., Chao, X.: Semi-supervised few-shot learning approach for plant diseases recognition[J]. Plant Methods, 17(1), 1-10 (2021) Li, Y., Chao, X.: Semi-supervised few-shot learning approach for plant diseases recognition[J]. Plant Methods, 17(1), 1-10 (2021)
19.
go back to reference Sung, F., Yang, Y., Zhang, L., et al.: Learning to compare: Relation network for few-shot learning[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 1199-1208 (2018) Sung, F., Yang, Y., Zhang, L., et al.: Learning to compare: Relation network for few-shot learning[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 1199-1208 (2018)
20.
go back to reference Dw, A., Yu, C.B., Mo, Y.C., et al.: A hybrid approach with optimization-based and metric-based meta-learner for few-shot learning. Neurocomputing 349, 202–211 (2019)CrossRef Dw, A., Yu, C.B., Mo, Y.C., et al.: A hybrid approach with optimization-based and metric-based meta-learner for few-shot learning. Neurocomputing 349, 202–211 (2019)CrossRef
21.
go back to reference Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning[J]. Synthesis lectures on artificial intelligence and machine learning, 3(1), 1-130 (2009) Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning[J]. Synthesis lectures on artificial intelligence and machine learning, 3(1), 1-130 (2009)
22.
go back to reference Pan, S.J., Qiang, Y.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)CrossRef Pan, S.J., Qiang, Y.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)CrossRef
23.
go back to reference Tomer, G., Lior, W., Tamir, H.: A theoretical framework for deep transfer learning. Inf Inference 2, 008 (2016)MathSciNetMATH Tomer, G., Lior, W., Tamir, H.: A theoretical framework for deep transfer learning. Inf Inference 2, 008 (2016)MathSciNetMATH
24.
go back to reference Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. Adv. Neural. Inf. Process. Syst. 7(10), 231–238 (1995) Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. Adv. Neural. Inf. Process. Syst. 7(10), 231–238 (1995)
25.
go back to reference Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning[J]. Machine learning, 15(2), 201-221 (1994) Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning[J]. Machine learning, 15(2), 201-221 (1994)
26.
go back to reference Wang, Q., Wu, W., Qi, Y., et al.: Deep Bayesian active learning for learning to rank: a case study in answer selection. IEEE Transact. Knowl Data Eng. 99, 1–1 (2021) Wang, Q., Wu, W., Qi, Y., et al.: Deep Bayesian active learning for learning to rank: a case study in answer selection. IEEE Transact. Knowl Data Eng. 99, 1–1 (2021)
27.
go back to reference Shayovitz, S., Feder, M.: Minimax active learning via minimal model capacity. 2019 IEEE 29th international workshop on machine learning for signal processing (MLSP). IEEE, New Jersey (2019) Shayovitz, S., Feder, M.: Minimax active learning via minimal model capacity. 2019 IEEE 29th international workshop on machine learning for signal processing (MLSP). IEEE, New Jersey (2019)
28.
go back to reference Wang, Q., Wu, W., Zhao, Y., et al.: Graph active learning for GCN-based zero-shot classification. Neurocomputing 435, 15–25 (2021)CrossRef Wang, Q., Wu, W., Zhao, Y., et al.: Graph active learning for GCN-based zero-shot classification. Neurocomputing 435, 15–25 (2021)CrossRef
29.
go back to reference Smailovic, J., Grcar, M., Lavrac, N., et al.: Stream-based active learning for sentiment analysis in the financial domain. Inf Sci 285, 181–203 (2014)CrossRef Smailovic, J., Grcar, M., Lavrac, N., et al.: Stream-based active learning for sentiment analysis in the financial domain. Inf Sci 285, 181–203 (2014)CrossRef
30.
go back to reference Zliobaite, I., Bifet, A., Pfahringer, B., et al.: Active learning with drifting streaming data. IEEE Transact. Neural Netw. Learn. Syst. 25(1), 27 (2014)CrossRef Zliobaite, I., Bifet, A., Pfahringer, B., et al.: Active learning with drifting streaming data. IEEE Transact. Neural Netw. Learn. Syst. 25(1), 27 (2014)CrossRef
31.
go back to reference Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers[C]//SIGIR’94. Springer, London, 3-12 (1994) Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers[C]//SIGIR’94. Springer, London, 3-12 (1994)
32.
go back to reference Chang, H.S., Vembu, S., Mohan, S., et al.: Using error decay prediction to overcome practical issues of deep active learning for named entity recognition. Mach. Learn. 109(4), 1749–1778 (2020)MathSciNetCrossRefMATH Chang, H.S., Vembu, S., Mohan, S., et al.: Using error decay prediction to overcome practical issues of deep active learning for named entity recognition. Mach. Learn. 109(4), 1749–1778 (2020)MathSciNetCrossRefMATH
33.
go back to reference Luo, T., Kramer, K., Goldgof, D.B., et al.: Active learning to recognize multiple types of plankton. J. Mach. Learn. Res. 6(4), 589–613 (2005)MathSciNetMATH Luo, T., Kramer, K., Goldgof, D.B., et al.: Active learning to recognize multiple types of plankton. J. Mach. Learn. Res. 6(4), 589–613 (2005)MathSciNetMATH
34.
go back to reference Said, N., Ahmad, K., Conci, N., et al.: Active learning for event detection in support of disaster analysis applications[J]. Signal, Image and Video Processing, 1-8 (2021) Said, N., Ahmad, K., Conci, N., et al.: Active learning for event detection in support of disaster analysis applications[J]. Signal, Image and Video Processing, 1-8 (2021)
35.
go back to reference Li, X., Guo, Y.: Adaptive active learning for image classification. Computer vision and pattern recognition (CVPR), 2013 IEEE conference on. IEEE, (2013) Li, X., Guo, Y.: Adaptive active learning for image classification. Computer vision and pattern recognition (CVPR), 2013 IEEE conference on. IEEE, (2013)
36.
go back to reference Zhou, J., Sun, S.: Gaussian process versus margin sampling active learning. Neurocomputing 167, 122–131 (2015)CrossRef Zhou, J., Sun, S.: Gaussian process versus margin sampling active learning. Neurocomputing 167, 122–131 (2015)CrossRef
37.
go back to reference Hasan, M., Roy-Chowdhury, A.K.: Context aware active learning of activity recognition models. 2015 IEEE international conference on computer vision (ICCV). IEEE, (2015) Hasan, M., Roy-Chowdhury, A.K.: Context aware active learning of activity recognition models. 2015 IEEE international conference on computer vision (ICCV). IEEE, (2015)
38.
go back to reference Yun., Juseung., Byungjoo Kim., Junmo Kim.: Weight decay scheduling and knowledge distillation for active learning. European conference on computer vision. Springer, Cham, (2020) Yun., Juseung., Byungjoo Kim., Junmo Kim.: Weight decay scheduling and knowledge distillation for active learning. European conference on computer vision. Springer, Cham, (2020)
39.
go back to reference Yang, J., Zhang, Z., Mao, W., et al.: Identification and micro-motion parameter estimation of non-cooperative UAV targets[J]. Physical Communication, 46: 101314 (2021) Yang, J., Zhang, Z., Mao, W., et al.: Identification and micro-motion parameter estimation of non-cooperative UAV targets[J]. Physical Communication, 46: 101314 (2021)
40.
go back to reference Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: A strong baseline[C]. 2017 International joint conference on neural networks (IJCNN). IEEE, 1578-1585 (2017) Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: A strong baseline[C]. 2017 International joint conference on neural networks (IJCNN). IEEE, 1578-1585 (2017)
41.
go back to reference Fawaz, H.I., Forestier, G., Weber, J., et al.: Deep learning for time series classification: a review[J]. Data mining and knowledge discovery, 33(4): 917-963 (2019) Fawaz, H.I., Forestier, G., Weber, J., et al.: Deep learning for time series classification: a review[J]. Data mining and knowledge discovery, 33(4): 917-963 (2019)
42.
go back to reference Li, T., Zhang, Y., Wang, T.: SRPM–CNN: a combined model based on slide relative position matrix and CNN for time series classification. Complex Intell. Syst. 7, 1619–1631 (2021)CrossRef Li, T., Zhang, Y., Wang, T.: SRPM–CNN: a combined model based on slide relative position matrix and CNN for time series classification. Complex Intell. Syst. 7, 1619–1631 (2021)CrossRef
43.
go back to reference He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 770-778 (2016) He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 770-778 (2016)
Metadata
Title
Radar target recognition based on few-shot learning
Authors
Yue Yang
Zhuo Zhang
Wei Mao
Yang Li
Chengang Lv
Publication date
26-07-2021
Publisher
Springer Berlin Heidelberg
Published in
Multimedia Systems / Issue 5/2023
Print ISSN: 0942-4962
Electronic ISSN: 1432-1882
DOI
https://doi.org/10.1007/s00530-021-00832-3

Other articles of this Issue 5/2023

Multimedia Systems 5/2023 Go to the issue