Skip to main content
Top
Published in: Journal of Geographical Systems 4/2015

01-10-2015 | Original Article

Random effects specifications in eigenvector spatial filtering: a simulation study

Authors: Daisuke Murakami, Daniel A. Griffith

Published in: Journal of Geographical Systems | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Eigenvector spatial filtering (ESF) is becoming a popular way to address spatial dependence. Recently, a random effects specification of ESF (RE-ESF) is receiving considerable attention because of its usefulness for spatial dependence analysis considering spatial confounding. The objective of this study was to analyze theoretical properties of RE-ESF and extend it to overcome some of its disadvantages. We first compare the properties of RE-ESF and ESF with geostatistical and spatial econometric models. There, we suggest two major disadvantages of RE-ESF: it is specific to its selected spatial connectivity structure, and while the current form of RE-ESF eliminates the spatial dependence component confounding with explanatory variables to stabilize the parameter estimation, the elimination can yield biased estimates. RE-ESF is extended to cope with these two problems. A computationally efficient residual maximum likelihood estimation is developed for the extended model. Effectiveness of the extended RE-ESF is examined by a comparative Monte Carlo simulation. The main findings of this simulation are as follows: Our extension successfully reduces errors in parameter estimates; in many cases, parameter estimates of our RE-ESF are more accurate than other ESF models; the elimination of the spatial component confounding with explanatory variables results in biased parameter estimates; efficiency of an accuracy maximization-based conventional ESF is comparable to RE-ESF in many cases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The expectation of MC, E[MC], equals \( - \frac{1}{N - 1} \) when M = I11′/N, whereas it equals \( - \frac{N}{{{\mathbf{1^{\prime}C1}}}}\frac{{tr[({\mathbf{X^{\prime}X}})^{ - 1} {\mathbf{X^{\prime}CX}}]}}{N - K - 1} \) when M = IX(XX) -1 X′. E[MC] < MC, MC < E[MC], and MC = E[MC] imply positive, negative, and no spatial dependence, respectively.
 
2
\( {\hat{\mathbf{\beta }}} \) in Eq. (5) is identical to the generalized least squared estimator (Henderson 1975).
 
3
Models with known mean structure are widely applied in geostatistics (e.g., Cressie and Wikle 2011).
 
4
Although the covariance matrix of ω usually is defined by σ NS 2 I + σ γ 2 (I + C), where σ NS 2 is a variance parameter, because it can be expanded as follows: σ NS 2 I + σ γ 2 (I + C) = (σ NS 2 +σ 2γ)I + σ γ 2 C = σ 2 I + σ γ 2 C, the assumption of zero diagonal elements is consistent with the usual assumption.
 
5
When M = I11 /N, RE-ESF approximates the geostatistical model with known constant mean.
 
6
The asymmetric matrix W has real eigenvalues and eigenvectors (see Griffith 2000).
 
7
Expanding the variance of in Eq. (22) as \( {\text{Var}}[{\mathbf{E\gamma }}] = \frac{{{\mathbf{\gamma^{\prime}E^{\prime}E\gamma }}}}{N} = \frac{{{\mathbf{\gamma^{\prime}\gamma }}}}{N} = \frac{1}{N}\sum\nolimits_{l} {{\text{diag}}[\sigma_{\gamma }^{2} k{\varvec{\Lambda}}(\alpha )]_{l} } = k\frac{{\sigma_{\gamma }^{2} }}{N}\sum\nolimits_{l} {\lambda_{l}^{\alpha } } \), where \( {\text{diag}}[ \cdot ]_{l} \) returns the lth diagonal of the matrix \( \cdot \). This equation shows that Var[] equals σ γ 2 when \( k = \frac{N}{{\sum\nolimits_{l} {\lambda_{l}^{\alpha } } }} \).
 
8
Equation (5) is expanded using X E = 0, which M = IX(X X) -1 X implies, as \( \left[ {\begin{array}{*{20}c} {{\hat{\mathbf{\beta }}}} \\ {{\hat{\mathbf{\gamma }}}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {{\mathbf{X^{\prime}X}}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{I}} + \frac{{\sigma_{{}}^{2} }}{{\sigma_{\gamma }^{2} }}{\varvec{\Lambda}}^{ - 1} } \\ \end{array} } \right]^{ - 1} \left[ {\begin{array}{*{20}c} {{\mathbf{X^{\prime}y}}} \\ {{\mathbf{E^{\prime}y}}} \\ \end{array} } \right] \) \( = \left[ {\begin{array}{*{20}c} {({\mathbf{X^{\prime}X}})^{ - 1} {\mathbf{X^{\prime}y}}} \\ {\left( {{\mathbf{I}} + \frac{{\sigma_{{}}^{2} }}{{\sigma_{\gamma }^{2} }}{\varvec{\Lambda}}^{ - 1} } \right)^{ - 1} {\mathbf{E^{\prime}y}}} \\ \end{array} } \right] \). Thus, \( {\hat{\mathbf{\beta }}} \) equals the estimate of the OLS estimate.
 
Literature
go back to reference Anselin L, Rey S (1991) Properties of tests for spatial dependence in linear regression models. Geogr Anal 23(2):112–131CrossRef Anselin L, Rey S (1991) Properties of tests for spatial dependence in linear regression models. Geogr Anal 23(2):112–131CrossRef
go back to reference Arbia G, Fingleton B (2008) New spatial econometric techniques and applications in Regional Science. Pap Reg Sci 87(3):311–317CrossRef Arbia G, Fingleton B (2008) New spatial econometric techniques and applications in Regional Science. Pap Reg Sci 87(3):311–317CrossRef
go back to reference Blancheta FG, Legendre P, Borcard D (2008) Modelling directional spatial process in ecological data. Ecol Model 215(4):325–336CrossRef Blancheta FG, Legendre P, Borcard D (2008) Modelling directional spatial process in ecological data. Ecol Model 215(4):325–336CrossRef
go back to reference Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol Model 153(1–2):51–68CrossRef Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol Model 153(1–2):51–68CrossRef
go back to reference Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10(4):317–344CrossRef Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10(4):317–344CrossRef
go back to reference Chun Y (2014) Analyzing space–time crime incidents using eigenvector spatial filtering: an application to vehicle burglary. Geogr Anal 46(2):165–184CrossRef Chun Y (2014) Analyzing space–time crime incidents using eigenvector spatial filtering: an application to vehicle burglary. Geogr Anal 46(2):165–184CrossRef
go back to reference Chun Y, Griffith DA (2011) Modeling network autocorrelation in space–time migration flow data: an eigenvector spatial filtering approach. Ann Assoc Am Geogr 101(3):523–536CrossRef Chun Y, Griffith DA (2011) Modeling network autocorrelation in space–time migration flow data: an eigenvector spatial filtering approach. Ann Assoc Am Geogr 101(3):523–536CrossRef
go back to reference Chun Y, Griffith DA (2013) Spatial statistics and geostatistics: theory and applications for geographic information science and technology. SAGE, London Chun Y, Griffith DA (2013) Spatial statistics and geostatistics: theory and applications for geographic information science and technology. SAGE, London
go back to reference Chun Y, Griffith DA (2014) A quality assessment of eigenvector spatial filtering based parameter estimates for the normal probability model. Spat Stat 10:1–11MathSciNetCrossRef Chun Y, Griffith DA (2014) A quality assessment of eigenvector spatial filtering based parameter estimates for the normal probability model. Spat Stat 10:1–11MathSciNetCrossRef
go back to reference Cressie N (1993) Statistics for spatial data. John Wiley & Sons, New York Cressie N (1993) Statistics for spatial data. John Wiley & Sons, New York
go back to reference Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New YorkMATH Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New YorkMATH
go back to reference Cuaresma CJ, Feldkircher M (2013) Spatial filtering, model uncertainty and the speed of income convergence in Europe. J Appl Econom 28(4):720–741CrossRef Cuaresma CJ, Feldkircher M (2013) Spatial filtering, model uncertainty and the speed of income convergence in Europe. J Appl Econom 28(4):720–741CrossRef
go back to reference Dray S, Legendre P, Peres-Neto PR (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196(3–4):483–493CrossRef Dray S, Legendre P, Peres-Neto PR (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196(3–4):483–493CrossRef
go back to reference Drineas P, Mahoney MW (2005) On the Nyström method for approximating a gram matrix for improved kernel-based learning. J Mach Learn Res 6:2153–2175MathSciNetMATH Drineas P, Mahoney MW (2005) On the Nyström method for approximating a gram matrix for improved kernel-based learning. J Mach Learn Res 6:2153–2175MathSciNetMATH
go back to reference Elhorst JP (2010) Applied spatial econometrics: raising the bar. Spat Econ Anal 5(1):9–28CrossRef Elhorst JP (2010) Applied spatial econometrics: raising the bar. Spat Econ Anal 5(1):9–28CrossRef
go back to reference Fischer MM, Griffith DA (2008) Modeling spatial autocorrelation in spatial interaction data: an application to patent citation data in European Union. J Reg Sci 48(5):969–989CrossRef Fischer MM, Griffith DA (2008) Modeling spatial autocorrelation in spatial interaction data: an application to patent citation data in European Union. J Reg Sci 48(5):969–989CrossRef
go back to reference Franzese RJ, Hays JC (2014) Testing for spatial-autoregressive lag versus (unobserved) spatially correlated error-components. Benjamin F. Shambaugh conference: New frontiers in the study of policy diffusion, University of Iowa, Iowa City Franzese RJ, Hays JC (2014) Testing for spatial-autoregressive lag versus (unobserved) spatially correlated error-components. Benjamin F. Shambaugh conference: New frontiers in the study of policy diffusion, University of Iowa, Iowa City
go back to reference Getis A (1990) Screening for spatial dependence in regression analysis. Paper Reg Sci Assoc 69(1):69–81CrossRef Getis A (1990) Screening for spatial dependence in regression analysis. Paper Reg Sci Assoc 69(1):69–81CrossRef
go back to reference Getis A, Griffith DA (2002) Comparative spatial filtering in regression analysis. Geogr Anal 34(2):130–140CrossRef Getis A, Griffith DA (2002) Comparative spatial filtering in regression analysis. Geogr Anal 34(2):130–140CrossRef
go back to reference Getis A, Ord K (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206CrossRef Getis A, Ord K (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206CrossRef
go back to reference Griffith DA (1996) Spatial autocorrelation and eigenfunctions of the geographic weights matrix accompanying georeferenced data. Can Geogr 40(4):351–367CrossRef Griffith DA (1996) Spatial autocorrelation and eigenfunctions of the geographic weights matrix accompanying georeferenced data. Can Geogr 40(4):351–367CrossRef
go back to reference Griffith DA (2000) Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Linear Algebr Appl 321(1–3):95–112MathSciNetCrossRefMATH Griffith DA (2000) Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Linear Algebr Appl 321(1–3):95–112MathSciNetCrossRefMATH
go back to reference Griffith DA (2003) Spatial autocorrelation and spatial filtering: Gaining understanding through theory and scientific visualization. Springer, BerlinCrossRef Griffith DA (2003) Spatial autocorrelation and spatial filtering: Gaining understanding through theory and scientific visualization. Springer, BerlinCrossRef
go back to reference Griffith DA (2004a) A spatial filtering specification for the autologistic model. Environ Plan 36(10):1791–1811CrossRef Griffith DA (2004a) A spatial filtering specification for the autologistic model. Environ Plan 36(10):1791–1811CrossRef
go back to reference Griffith DA (2004b) Distributional properties of georeferenced random variables based on the eigenfunction spatial filter. J Geogr Syst 6(3):263–288MathSciNetCrossRef Griffith DA (2004b) Distributional properties of georeferenced random variables based on the eigenfunction spatial filter. J Geogr Syst 6(3):263–288MathSciNetCrossRef
go back to reference Griffith DA (2006) Hidden negative spatial autocorrelation. J Geogr Syst 8(4):335–355CrossRef Griffith DA (2006) Hidden negative spatial autocorrelation. J Geogr Syst 8(4):335–355CrossRef
go back to reference Griffith DA (2008) Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environ Plan 40(11):2751–2769CrossRef Griffith DA (2008) Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environ Plan 40(11):2751–2769CrossRef
go back to reference Griffith DA (2009) Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows. J Geogr Syst 11(2):117–140CrossRef Griffith DA (2009) Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows. J Geogr Syst 11(2):117–140CrossRef
go back to reference Griffith DA (2010) Spatial filtering. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis. Springer, Berlin, pp 301–318CrossRef Griffith DA (2010) Spatial filtering. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis. Springer, Berlin, pp 301–318CrossRef
go back to reference Griffith DA (2011) Visualizing analytical spatial autocorrelation components latent in spatial interaction data: an eigenvector spatial filter approach. Comput Environ Urban Syst 35(2):140–149MathSciNetCrossRef Griffith DA (2011) Visualizing analytical spatial autocorrelation components latent in spatial interaction data: an eigenvector spatial filter approach. Comput Environ Urban Syst 35(2):140–149MathSciNetCrossRef
go back to reference Griffith DA, Chun Y (2013) Spatial autocorrelation and spatial filtering. In: Fischer MM, Nijkamp P (eds) Handbook of regional science. Springer, Berlin, pp 1477–1507 Griffith DA, Chun Y (2013) Spatial autocorrelation and spatial filtering. In: Fischer MM, Nijkamp P (eds) Handbook of regional science. Springer, Berlin, pp 1477–1507
go back to reference Griffith DA, Csillag F (1993) Exploring relationship between semi-variogram and spatial autoregressive models. Paper Reg Sci 72(3):283–295CrossRef Griffith DA, Csillag F (1993) Exploring relationship between semi-variogram and spatial autoregressive models. Paper Reg Sci 72(3):283–295CrossRef
go back to reference Griffith DA, Fischer MM (2013) Constrained variants of the gravity model and spatial dependence: model specification and estimation issues. J Geogr Syst 15(3):291–317CrossRef Griffith DA, Fischer MM (2013) Constrained variants of the gravity model and spatial dependence: model specification and estimation issues. J Geogr Syst 15(3):291–317CrossRef
go back to reference Griffith DA, Layne L (1997) Uncovering relationships between geo-statistical and spatial autoregressive models. In: American Statistical Association (ed) Proceedings of the section on statistics and the environment 1997, American Statistical Association, Alexandria, Virginia, pp 91–96 Griffith DA, Layne L (1997) Uncovering relationships between geo-statistical and spatial autoregressive models. In: American Statistical Association (ed) Proceedings of the section on statistics and the environment 1997, American Statistical Association, Alexandria, Virginia, pp 91–96
go back to reference Griffith DA, Paelinck JHP (2011) Non–standard spatial statistics and spatial econometrics. Springer, BerlinCrossRef Griffith DA, Paelinck JHP (2011) Non–standard spatial statistics and spatial econometrics. Springer, BerlinCrossRef
go back to reference Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses in exploiting relative location information. Ecol 87(10):2603–2613CrossRef Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses in exploiting relative location information. Ecol 87(10):2603–2613CrossRef
go back to reference Grimpe C, Patuelli R (2009) Regional knowledge production in nanomaterials: a spatial filtering approach. Ann Reg Sci 46(3):519–541CrossRef Grimpe C, Patuelli R (2009) Regional knowledge production in nanomaterials: a spatial filtering approach. Ann Reg Sci 46(3):519–541CrossRef
go back to reference Haskard KA, Lark RM (2009) Modelling non-stationary variance of soil properties by tempering an empirical spectrum. Geoderma 153(1–2):18–28CrossRef Haskard KA, Lark RM (2009) Modelling non-stationary variance of soil properties by tempering an empirical spectrum. Geoderma 153(1–2):18–28CrossRef
go back to reference Helbich M, Arsanjani JJ (2014) Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis. Cartogr Geogr Inf Sci 42(2):134–148CrossRef Helbich M, Arsanjani JJ (2014) Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis. Cartogr Geogr Inf Sci 42(2):134–148CrossRef
go back to reference Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31(2):423–447CrossRefPubMedMATH Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31(2):423–447CrossRefPubMedMATH
go back to reference Hodges JS (2013) Richly parameterized linear models: additive, time series, and spatial models using random effects. CRC Press, Boca Raton Hodges JS (2013) Richly parameterized linear models: additive, time series, and spatial models using random effects. CRC Press, Boca Raton
go back to reference Hughes J, Haran M (2013) Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J R Stat Soc B Stat Methodol 75(1):139–159MathSciNetCrossRef Hughes J, Haran M (2013) Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J R Stat Soc B Stat Methodol 75(1):139–159MathSciNetCrossRef
go back to reference Jacob GB, Muturi EJ, Caamano EX, Gunter JT et al (2008) Hydrological modeling of geophysical parameters of arboviral and protozoan disease vectors in Internally Displaced People camps in Gulu, Uganda. Int J Health Geogr 7:11PubMedCentralCrossRefPubMed Jacob GB, Muturi EJ, Caamano EX, Gunter JT et al (2008) Hydrological modeling of geophysical parameters of arboviral and protozoan disease vectors in Internally Displaced People camps in Gulu, Uganda. Int J Health Geogr 7:11PubMedCentralCrossRefPubMed
go back to reference Legendre P, Legendre L (2012) Numerical Ecology, 3rd edn. Elsevier Science BV, Amsterdam Legendre P, Legendre L (2012) Numerical Ecology, 3rd edn. Elsevier Science BV, Amsterdam
go back to reference LeSage JP, Pace RK (2009) Introduction to spatial econometrics. Chapman & Hall/CRC, Boca RatonCrossRefMATH LeSage JP, Pace RK (2009) Introduction to spatial econometrics. Chapman & Hall/CRC, Boca RatonCrossRefMATH
go back to reference LeSage JP, Pace RK (2014) The biggest myth in spatial econometrics. Econom 2(4):217–249 LeSage JP, Pace RK (2014) The biggest myth in spatial econometrics. Econom 2(4):217–249
go back to reference LeSage JP, Parent O (2007) Bayesian model averaging for spatial econometric models. Geogr Anal 39(3):241–267CrossRef LeSage JP, Parent O (2007) Bayesian model averaging for spatial econometric models. Geogr Anal 39(3):241–267CrossRef
go back to reference Moniruzzaman M, Paez A (2012) A model-based approach to select case sites for walkability audits. Health Place 18(6):1323–1334CrossRefPubMed Moniruzzaman M, Paez A (2012) A model-based approach to select case sites for walkability audits. Health Place 18(6):1323–1334CrossRefPubMed
go back to reference Moran PAP (1950) Notes on continuous stochastic phenomena. Biom 37(1/2):17–23MATH Moran PAP (1950) Notes on continuous stochastic phenomena. Biom 37(1/2):17–23MATH
go back to reference Pace RK, LeSage JP (2010) Omitted variable biases of OLS and spatial lag models. In: Páez A, Gallo J, Buliung RN, Dall’erba S (eds) Progress in spatial analysis. Springer, Berlin, pp 17–28CrossRef Pace RK, LeSage JP (2010) Omitted variable biases of OLS and spatial lag models. In: Páez A, Gallo J, Buliung RN, Dall’erba S (eds) Progress in spatial analysis. Springer, Berlin, pp 17–28CrossRef
go back to reference Pace RK, LeSage JP, Zhu S (2013) Interpretation and computation of estimates from regression models using spatial filtering. Spat Econ Anal 8(3):352–369CrossRef Pace RK, LeSage JP, Zhu S (2013) Interpretation and computation of estimates from regression models using spatial filtering. Spat Econ Anal 8(3):352–369CrossRef
go back to reference Patuelli R, Griffith DA, Tiefelsdorf M, Nijkamp P (2011) Spatial filtering and eigenvector stability: space-time models for German unemployment data. Int Reg Sci Rev 34(2):253–280CrossRef Patuelli R, Griffith DA, Tiefelsdorf M, Nijkamp P (2011) Spatial filtering and eigenvector stability: space-time models for German unemployment data. Int Reg Sci Rev 34(2):253–280CrossRef
go back to reference Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecol Soc Am 87(10):2614–2625 Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecol Soc Am 87(10):2614–2625
go back to reference Pintore A, Holmes CC (2004) Non-stationary covariance functions via spatially adaptive spectra. University of Oxford, Oxford Pintore A, Holmes CC (2004) Non-stationary covariance functions via spatially adaptive spectra. University of Oxford, Oxford
go back to reference Scherngell T, Lata R (2013) Towards an integrated European Research Area? Findings from eigenvector spatially filtered spatial interaction models using European Framework Programme data. Pap Reg Sci 92(3):555–577 Scherngell T, Lata R (2013) Towards an integrated European Research Area? Findings from eigenvector spatially filtered spatial interaction models using European Framework Programme data. Pap Reg Sci 92(3):555–577
go back to reference Seya H, Tsutsumi M, Yamagata Y (2014a) Weighted-average least squares applied to spatial econometric models: a Monte Carlo investigation. Geogr Anal 46(2):126–147CrossRef Seya H, Tsutsumi M, Yamagata Y (2014a) Weighted-average least squares applied to spatial econometric models: a Monte Carlo investigation. Geogr Anal 46(2):126–147CrossRef
go back to reference Seya H, Murakami D, Tsutsumi M, Yamagata Y (2014b) Application of LASSO to the eigenvector selection problem in eigenvector-based spatial filtering. Geogr Anal. doi:10.1111/gean.12054 Seya H, Murakami D, Tsutsumi M, Yamagata Y (2014b) Application of LASSO to the eigenvector selection problem in eigenvector-based spatial filtering. Geogr Anal. doi:10.​1111/​gean.​12054
go back to reference Thayn JB, Simanis JM (2013) Accounting for spatial autocorrelation in linear regression models using spatial filtering with eigenvectors. Ann Assoc Am Geogr 103(1):47–66CrossRef Thayn JB, Simanis JM (2013) Accounting for spatial autocorrelation in linear regression models using spatial filtering with eigenvectors. Ann Assoc Am Geogr 103(1):47–66CrossRef
go back to reference Tiefelsdorf M, Griffith DA (2007) Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environ Plan A 39(5):1193–1221CrossRef Tiefelsdorf M, Griffith DA (2007) Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environ Plan A 39(5):1193–1221CrossRef
go back to reference Wang Y, Kockelman KM, Wang X (2013) Understanding spatial filtering for analysis of land use-transport data. J Transp Geogr 31:123–131CrossRef Wang Y, Kockelman KM, Wang X (2013) Understanding spatial filtering for analysis of land use-transport data. J Transp Geogr 31:123–131CrossRef
Metadata
Title
Random effects specifications in eigenvector spatial filtering: a simulation study
Authors
Daisuke Murakami
Daniel A. Griffith
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
Journal of Geographical Systems / Issue 4/2015
Print ISSN: 1435-5930
Electronic ISSN: 1435-5949
DOI
https://doi.org/10.1007/s10109-015-0213-7

Premium Partner