Skip to main content
Top
Published in: Bulletin of Engineering Geology and the Environment 3/2018

13-06-2017 | Original Paper

Random field-based regional liquefaction hazard mapping — data inference and model verification using a synthetic digital soil field

Authors: C. Hsein Juang, Mengfen Shen, Chaofeng Wang, Qiushi Chen

Published in: Bulletin of Engineering Geology and the Environment | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Geostatistical tools and random field models have been increasingly used in recent liquefaction mapping studies. However, a systematic verification and assessment of random field models has yet to be taken, and implications of various random field-based mapping approaches are unknown. In this paper, an extremely detailed three-dimensional synthetic digital soil field is artificially generated and used as a basis for assessing and verifying various random field-based models for liquefaction mapping. Liquefaction hazard is quantified in terms of the liquefaction potential index (LPI), which is mapped over the studied field. A classical CPT-based liquefaction model is adopted to assess liquefaction potential of a soil layer. Different virtual field investigation plans are designed to assess the dependency of data inference and model performance upon the level of availability of sampling data. Model performances are assessed using three information theory-based measures. Results show that when sampling data is sufficient, all random field-based models examined capture fairly well the benchmark liquefaction potentials in the studied field. As the size of the sampling data decreases, the accuracy of predictions decreases for all models but to different degrees; the three-dimensional random field model gives the best result in this scenario. All random field-based models examined in this paper yield a slightly more conservative prediction of liquefaction potential over the studied field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Andrus RD, Stokoe KH II (2000) Liquefaction resistance of soils from shear-wave velocity. J Geotech Geoenviron 126(11):1015–1025CrossRef Andrus RD, Stokoe KH II (2000) Liquefaction resistance of soils from shear-wave velocity. J Geotech Geoenviron 126(11):1015–1025CrossRef
go back to reference Armstrong JS, Collopy F (1992) Error measures for generalizing about forecasting methods: empirical comparisons. Int J Forecast 8(1):69–80CrossRef Armstrong JS, Collopy F (1992) Error measures for generalizing about forecasting methods: empirical comparisons. Int J Forecast 8(1):69–80CrossRef
go back to reference Baise LG, Higgins RB, Brankman CM (2006) Liquefaction hazard mapping – statistical and spatial characterization of susceptible units. J Geotech Geoenviron 132(6):705–715CrossRef Baise LG, Higgins RB, Brankman CM (2006) Liquefaction hazard mapping – statistical and spatial characterization of susceptible units. J Geotech Geoenviron 132(6):705–715CrossRef
go back to reference Baise LG, Lenz JA, Thompson EM (2008) Discussion of “mapping liquefaction potential considering spatial correlations of CPT measurements” by chia-nan Liu and Chien-Hsun Chen. J Geotech Geoenviron 134(2):262–263CrossRef Baise LG, Lenz JA, Thompson EM (2008) Discussion of “mapping liquefaction potential considering spatial correlations of CPT measurements” by chia-nan Liu and Chien-Hsun Chen. J Geotech Geoenviron 134(2):262–263CrossRef
go back to reference Baker JW, Faber MH (2008) Liquefaction risk assessment using geostatistics to account for soil spatial variability. J Geotech Geoenviron 134(1):14–23CrossRef Baker JW, Faber MH (2008) Liquefaction risk assessment using geostatistics to account for soil spatial variability. J Geotech Geoenviron 134(1):14–23CrossRef
go back to reference Baker JW, Seifried A, Andrade JE, and Chen Q (2011) Characterization of random fields at multiple scales: an efficient conditional simulation procedure and applications in geomechanics. Applications of Statistics and Probability in Civil Engineering. CRC, Boca Raton, p 347–348 Baker JW, Seifried A, Andrade JE, and Chen Q (2011) Characterization of random fields at multiple scales: an efficient conditional simulation procedure and applications in geomechanics. Applications of Statistics and Probability in Civil Engineering. CRC, Boca Raton, p 347–348
go back to reference Boulanger RW, Idriss IM (2012) Probabilistic standard penetration test-based liquefaction triggering procedure. J Geotech Geoenviron 138(10):1185–1195CrossRef Boulanger RW, Idriss IM (2012) Probabilistic standard penetration test-based liquefaction triggering procedure. J Geotech Geoenviron 138(10):1185–1195CrossRef
go back to reference Cetin KO, Seed RB, Der Kiureghian A, Tokimatsu K, Harder LF Jr, Kayen RE, Moss RE (2004) Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron 130(12):1314–1340CrossRef Cetin KO, Seed RB, Der Kiureghian A, Tokimatsu K, Harder LF Jr, Kayen RE, Moss RE (2004) Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron 130(12):1314–1340CrossRef
go back to reference Chen Q, Seifried A, Andrade JE, Baker JW (2012) Characterization of random fields and their impact on the mechanics of geosystems at multiple scales. Int J Numer Anal Methods Geomech 36(2):140–165CrossRef Chen Q, Seifried A, Andrade JE, Baker JW (2012) Characterization of random fields and their impact on the mechanics of geosystems at multiple scales. Int J Numer Anal Methods Geomech 36(2):140–165CrossRef
go back to reference Chen Q, Wang C, Juang CH (2015) CPT-based evaluation of liquefaction potential accounting for soil spatial variability at multiple scales. J Geotech Geoenviron 142(2):04015077CrossRef Chen Q, Wang C, Juang CH (2015) CPT-based evaluation of liquefaction potential accounting for soil spatial variability at multiple scales. J Geotech Geoenviron 142(2):04015077CrossRef
go back to reference Chen Q, Wang C, Juang CH (2016) Probabilistic and spatial assessment of liquefaction- induced settlements through multiscale random field models. Eng Geol 211:135–149CrossRef Chen Q, Wang C, Juang CH (2016) Probabilistic and spatial assessment of liquefaction- induced settlements through multiscale random field models. Eng Geol 211:135–149CrossRef
go back to reference Dawson K and Baise LG (2004) Three dimensional liquefaction hazard analysis. In: Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, BC, Canada Dawson K and Baise LG (2004) Three dimensional liquefaction hazard analysis. In: Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, BC, Canada
go back to reference Fenton GA (1999) Random field modeling of CPT data. J Geotech Geoenviron 125(6):486–498CrossRef Fenton GA (1999) Random field modeling of CPT data. J Geotech Geoenviron 125(6):486–498CrossRef
go back to reference Finn WDL (2002) State of the art for the evaluation of seismic liquefaction potential. Comput Geotech 29(5):329–341CrossRef Finn WDL (2002) State of the art for the evaluation of seismic liquefaction potential. Comput Geotech 29(5):329–341CrossRef
go back to reference Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York
go back to reference Holzer TL, Bennett MJ, Noce TE, Padovani AC, Tinsley JC III (2006a) Liquefaction hazard mapping with LPI in the greater Oakland, California, area. Earthquake Spectra 22(3):693–708 Holzer TL, Bennett MJ, Noce TE, Padovani AC, Tinsley JC III (2006a) Liquefaction hazard mapping with LPI in the greater Oakland, California, area. Earthquake Spectra 22(3):693–708
go back to reference Holzer TL, Luke Blair J, Noce TE, Bennett MJ (2006b) Predicted liquefaction of East Bay fills during a repeat of the 1906 San Francisco earthquake. Earthquake Spectra 22(S2):261–277 Holzer TL, Luke Blair J, Noce TE, Bennett MJ (2006b) Predicted liquefaction of East Bay fills during a repeat of the 1906 San Francisco earthquake. Earthquake Spectra 22(S2):261–277
go back to reference Iwasaki T, Tatsuoka F, Tokida K, and Yasuda S (1978) A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan. In: Proceedings 2nd International Conference on Microzonation, pp 885–896 Iwasaki T, Tatsuoka F, Tokida K, and Yasuda S (1978) A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan. In: Proceedings 2nd International Conference on Microzonation, pp 885–896
go back to reference Iwasaki T, Tokida K, Tatsuoka F, Watanabe S, Yasuda S, and Sato H (1982) Microzonation for soil liquefaction potential using simplified methods. In: Proceedings of the 3rd international conference on microzonation, Seattle, 3:1310–1330 Iwasaki T, Tokida K, Tatsuoka F, Watanabe S, Yasuda S, and Sato H (1982) Microzonation for soil liquefaction potential using simplified methods. In: Proceedings of the 3rd international conference on microzonation, Seattle, 3:1310–1330
go back to reference Juang CH, Jiang T, Andrus RD (2002) Assessing probability-based methods for liquefaction potential evaluation. J Geotech Geoenviron 128(7):580–589CrossRef Juang CH, Jiang T, Andrus RD (2002) Assessing probability-based methods for liquefaction potential evaluation. J Geotech Geoenviron 128(7):580–589CrossRef
go back to reference Juang CH, Yuan H, Lee DH, Lin PS (2003) Simplified cone penetration test-based method for evaluating liquefaction resistance of soils. J Geotech Geoenviron 129(1):66–80CrossRef Juang CH, Yuan H, Lee DH, Lin PS (2003) Simplified cone penetration test-based method for evaluating liquefaction resistance of soils. J Geotech Geoenviron 129(1):66–80CrossRef
go back to reference Juang CH, Liu CN, Chen CH, Hwang JH, Lu CC (2008) Calibration of liquefaction potential index: a re-visit focusing on a new CPTU model. Eng Geol 102(1):19–30CrossRef Juang CH, Liu CN, Chen CH, Hwang JH, Lu CC (2008) Calibration of liquefaction potential index: a re-visit focusing on a new CPTU model. Eng Geol 102(1):19–30CrossRef
go back to reference Juang CH, Luo Z, Atamturktur S, Huang H (2012) Bayesian updating of soil parameters for braced excavations using field observations. J Geotech Geoenviron 139(3):395–406CrossRef Juang CH, Luo Z, Atamturktur S, Huang H (2012) Bayesian updating of soil parameters for braced excavations using field observations. J Geotech Geoenviron 139(3):395–406CrossRef
go back to reference Khoshnevisan S, Juang H, Zhou YG, Gong W (2015) Probabilistic assessment of liquefaction-induced lateral spreads using CPT—focusing on the 2010–2011 Canterbury earthquake sequence. Eng Geol 192:113–128CrossRef Khoshnevisan S, Juang H, Zhou YG, Gong W (2015) Probabilistic assessment of liquefaction-induced lateral spreads using CPT—focusing on the 2010–2011 Canterbury earthquake sequence. Eng Geol 192:113–128CrossRef
go back to reference Kung GT, Juang CH, Hsiao EC, Hashash YM (2007) Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays. J Geotech Geoenviron 136(6):731–747CrossRef Kung GT, Juang CH, Hsiao EC, Hashash YM (2007) Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays. J Geotech Geoenviron 136(6):731–747CrossRef
go back to reference Lenz JA, Baise LG (2007) Spatial variability of liquefaction potential in regional mapping using CPT and SPT data. Soil Dyn Earthq Eng 27(7):690–702CrossRef Lenz JA, Baise LG (2007) Spatial variability of liquefaction potential in regional mapping using CPT and SPT data. Soil Dyn Earthq Eng 27(7):690–702CrossRef
go back to reference Li DK, Juang CH, Andrus RD (2006) Liquefaction potential index: a critical assessment using probability concept. Taiwan Geotech Soc J Geoengin 1(1):11–24 Li DK, Juang CH, Andrus RD (2006) Liquefaction potential index: a critical assessment using probability concept. Taiwan Geotech Soc J Geoengin 1(1):11–24
go back to reference Liu CN, Chen CH (2006) Mapping liquefaction potential considering spatial correlations of CPT measurements. J Geotech Geoenviron 132(9):1178–1187CrossRef Liu CN, Chen CH (2006) Mapping liquefaction potential considering spatial correlations of CPT measurements. J Geotech Geoenviron 132(9):1178–1187CrossRef
go back to reference Liu F, Li Z, Jiang M, Frattini P, Crosta G (2016) Quantitative liquefaction-induced lateral spread hazard mapping. Eng Geol 207:36–47CrossRef Liu F, Li Z, Jiang M, Frattini P, Crosta G (2016) Quantitative liquefaction-induced lateral spread hazard mapping. Eng Geol 207:36–47CrossRef
go back to reference Liu W, Chen Q, Wang C, Juang CH, Chen G (2017) Spatially correlated multiscale Vs30 mapping and a case study of the Suzhou site. Eng Geol 220:110–122CrossRef Liu W, Chen Q, Wang C, Juang CH, Chen G (2017) Spatially correlated multiscale Vs30 mapping and a case study of the Suzhou site. Eng Geol 220:110–122CrossRef
go back to reference Moss RE, Seed RB, Kayen RE, Stewart JP, Der Kiureghian A, Cetin KO (2006) CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. J Geotech Geoenviron 132(8):1032–1051CrossRef Moss RE, Seed RB, Kayen RE, Stewart JP, Der Kiureghian A, Cetin KO (2006) CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. J Geotech Geoenviron 132(8):1032–1051CrossRef
go back to reference Prasomphan S, Mase S (2013) Generating prediction map for geostatistical data based on an adaptive neural network using only nearest neighbors. Int J Mach Learn Comput 3(1):98–102 Prasomphan S, Mase S (2013) Generating prediction map for geostatistical data based on an adaptive neural network using only nearest neighbors. Int J Mach Learn Comput 3(1):98–102
go back to reference Robertson PK (2009) Performance based earthquake design using the CPT. Proc. IS-Tokyo, pp 3–20 Robertson PK (2009) Performance based earthquake design using the CPT. Proc. IS-Tokyo, pp 3–20
go back to reference Robertson PK, Wride CE (1998) Evaluating cyclic liquefaction potential using the cone penetration test. Can Geotech J 35(3):442–459CrossRef Robertson PK, Wride CE (1998) Evaluating cyclic liquefaction potential using the cone penetration test. Can Geotech J 35(3):442–459CrossRef
go back to reference Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div 97(9):1249–1273 Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div 97(9):1249–1273
go back to reference Seed HB and Idriss IM (1982) Ground motions and soil liquefaction during earthquakes, vol 5. Earthquake Engineering Research Institute, Berkeley Seed HB and Idriss IM (1982) Ground motions and soil liquefaction during earthquakes, vol 5. Earthquake Engineering Research Institute, Berkeley
go back to reference Seed HB, Tokimatsu K, Harder LF, Chung RM (1985) Influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Eng 111(12):1425–1445CrossRef Seed HB, Tokimatsu K, Harder LF, Chung RM (1985) Influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Eng 111(12):1425–1445CrossRef
go back to reference Shen M, Chen Q, Zhang J, Gong W, Juang CH (2016) Predicting liquefaction probability based on shear wave velocity: an update. Bull Eng Geol Environ 75(3):1199–1214CrossRef Shen M, Chen Q, Zhang J, Gong W, Juang CH (2016) Predicting liquefaction probability based on shear wave velocity: an update. Bull Eng Geol Environ 75(3):1199–1214CrossRef
go back to reference Sonmez H (2003) Modification of the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol, Turkey). Environ Geol 44(7):862–871CrossRef Sonmez H (2003) Modification of the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol, Turkey). Environ Geol 44(7):862–871CrossRef
go back to reference Van Ballegooy S, Wentz F, Boulanger RW (2015) Evaluation of cpt-based liquefaction procedures at regional scale. Soil Dyn Earthq Eng 79:315–334CrossRef Van Ballegooy S, Wentz F, Boulanger RW (2015) Evaluation of cpt-based liquefaction procedures at regional scale. Soil Dyn Earthq Eng 79:315–334CrossRef
go back to reference Vivek B, Raychowdhury P (2014) Probabilistic and spatial liquefaction analysis using CPT data: a case study for alameda county site. Nat Hazards 71(3):1715–1732CrossRef Vivek B, Raychowdhury P (2014) Probabilistic and spatial liquefaction analysis using CPT data: a case study for alameda county site. Nat Hazards 71(3):1715–1732CrossRef
go back to reference Wang C, Chen Q, Shen M, Juang CH (2017) On the spatial variability of CPT-based geotechnical parameters for liquefaction potential evaluation. Soil Dyn Earthq Eng 95:153–166CrossRef Wang C, Chen Q, Shen M, Juang CH (2017) On the spatial variability of CPT-based geotechnical parameters for liquefaction potential evaluation. Soil Dyn Earthq Eng 95:153–166CrossRef
go back to reference Webster R, Oliver MA (1992) Sample adequately to estimate variograms of soil properties. J Soil Sci 43(1):177–192CrossRef Webster R, Oliver MA (1992) Sample adequately to estimate variograms of soil properties. J Soil Sci 43(1):177–192CrossRef
go back to reference Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian J, Dobry R, Finn DWL, Harder LF Jr, Hynes ME, Ishihara K, Koester J, Liao S, Marcuson WI, Martin G, Mitchell J, Moriwaki Y, Power M, Robertson P, Seed R, Stokoe KI (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron 127(4):297–313CrossRef Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian J, Dobry R, Finn DWL, Harder LF Jr, Hynes ME, Ishihara K, Koester J, Liao S, Marcuson WI, Martin G, Mitchell J, Moriwaki Y, Power M, Robertson P, Seed R, Stokoe KI (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron 127(4):297–313CrossRef
Metadata
Title
Random field-based regional liquefaction hazard mapping — data inference and model verification using a synthetic digital soil field
Authors
C. Hsein Juang
Mengfen Shen
Chaofeng Wang
Qiushi Chen
Publication date
13-06-2017
Publisher
Springer Berlin Heidelberg
Published in
Bulletin of Engineering Geology and the Environment / Issue 3/2018
Print ISSN: 1435-9529
Electronic ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-017-1071-y

Other articles of this Issue 3/2018

Bulletin of Engineering Geology and the Environment 3/2018 Go to the issue