Skip to main content
Top
Published in: Polymer Bulletin 7/2019

01-10-2018 | Original Paper

Rapid preparation and continuous processing of polylactide stereocomplex crystallite below its melting point

Authors: Xin-Rui Gao, Ben Niu, Wen-Qiang Hua, Yue Li, Ling Xu, Yan Wang, Xu Ji, Gan-Ji Zhong, Zhong-Ming Li

Published in: Polymer Bulletin | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Herein, a feasible protocol for the rapid preparation of polylactide (PLA) stereocomplex (SC) crystallite by extrusion was shown, in which a processing temperature lower than its melting point was chosen to suppress the thermal degradation and homocrystallization of PLA. Meanwhile, flexible and biodegradable poly(butylene adipate-co-terephthalate) (PBAT) was introduced to improve the processability of solid SC crystallite. The exclusive formation of SC crystallite with high crystallinity (~ 50 to 60%) was realized without further thermal treatment, which was clearly confirmed by wide-angle X-ray diffraction and different scanning calorimeter tests. It was found that certain amount of PBAT actually facilitates the stereocomplexation process, rendering the extrusion much smooth with 30 wt% more PBAT, thus making it promising to industrially achieve SC crystallite. Furthermore, the as-prepared PBAT/SC blend could be processed easily at a relatively low temperature, desirably allowing its scalable application. This work delivers a facile method for the efficient preparation and wider application of SC crystallite, which could be of great value to fabricate nucleating agents or heat-resistant PLA parts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRef Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRef
2.
go back to reference Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84CrossRef Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84CrossRef
3.
go back to reference Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromol 12:523–532CrossRef Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromol 12:523–532CrossRef
4.
go back to reference Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356CrossRef Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356CrossRef
5.
go back to reference Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677CrossRef Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677CrossRef
6.
go back to reference Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906CrossRef Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906CrossRef
7.
go back to reference Tsuji H, Fukui I (2003) Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44:2891–2896CrossRef Tsuji H, Fukui I (2003) Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44:2891–2896CrossRef
8.
go back to reference Tan BH, Muiruri JK, Li ZB, He CB (2016) Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain Chem Eng 4:5370–5391CrossRef Tan BH, Muiruri JK, Li ZB, He CB (2016) Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain Chem Eng 4:5370–5391CrossRef
9.
go back to reference Tsuji H (2003) In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Biomaterials 24:537–547CrossRefPubMed Tsuji H (2003) In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Biomaterials 24:537–547CrossRefPubMed
10.
go back to reference Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597CrossRef Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597CrossRef
11.
go back to reference Bai H, Deng S, Bai D, Zhang Q, Fu Q (2017) Recent advances in processing of stereocomplex-type polylactide. Macro Rapid Commun 38:1700454CrossRef Bai H, Deng S, Bai D, Zhang Q, Fu Q (2017) Recent advances in processing of stereocomplex-type polylactide. Macro Rapid Commun 38:1700454CrossRef
12.
go back to reference Li Z, Tan BH, Lin T, He C (2016) Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog Polym Sci 62:22–72CrossRef Li Z, Tan BH, Lin T, He C (2016) Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog Polym Sci 62:22–72CrossRef
13.
go back to reference Purnama P, Kim SH (2010) Stereocomplex formation of high-molecular-weight polylactide using supercritical fluid. Macromolecules 43:1137–1142CrossRef Purnama P, Kim SH (2010) Stereocomplex formation of high-molecular-weight polylactide using supercritical fluid. Macromolecules 43:1137–1142CrossRef
14.
go back to reference Samuel C, Cayuela J, Barakat I, Mueller AJ, Raquez J-M, Dubois P (2013) Stereocomplexation of polylactide enhanced by poly(methyl methacrylate): improved processability and thermomechanical properties of stereocomplexable polylactide-based materials. ACS Appl Mater Interfaces 5:11797–11807CrossRefPubMed Samuel C, Cayuela J, Barakat I, Mueller AJ, Raquez J-M, Dubois P (2013) Stereocomplexation of polylactide enhanced by poly(methyl methacrylate): improved processability and thermomechanical properties of stereocomplexable polylactide-based materials. ACS Appl Mater Interfaces 5:11797–11807CrossRefPubMed
15.
go back to reference Davachi SM, Kaffashi B (2015) Polylactic acid in medicine. Polym Plast Technol Eng 54:944–967CrossRef Davachi SM, Kaffashi B (2015) Polylactic acid in medicine. Polym Plast Technol Eng 54:944–967CrossRef
16.
go back to reference Yu HX, Huang NX, Wang CS, Tang ZL (2003) Modeling of poly(L-lactide) thermal degradation: theoretical prediction of molecular weight and polydispersity index. J Appl Polym Sci 88:2557–2562CrossRef Yu HX, Huang NX, Wang CS, Tang ZL (2003) Modeling of poly(L-lactide) thermal degradation: theoretical prediction of molecular weight and polydispersity index. J Appl Polym Sci 88:2557–2562CrossRef
17.
go back to reference Signori F, Coltelli M-B, Bronco S (2009) Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym Degrad Stab 94:74–82CrossRef Signori F, Coltelli M-B, Bronco S (2009) Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym Degrad Stab 94:74–82CrossRef
18.
go back to reference Tsuji H, Ikada Y (1993) Stereocomplex formation between enantiomeric poly(lactic acid)s. 9. Stereocomplexation from the melt. Macromolecules 26:6918–6926CrossRef Tsuji H, Ikada Y (1993) Stereocomplex formation between enantiomeric poly(lactic acid)s. 9. Stereocomplexation from the melt. Macromolecules 26:6918–6926CrossRef
19.
go back to reference Tsuji H, Horii F, Hyon SH, Ikada Y (1991) Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated-solutions. Macromolecules 24:2719–2724CrossRef Tsuji H, Horii F, Hyon SH, Ikada Y (1991) Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated-solutions. Macromolecules 24:2719–2724CrossRef
20.
go back to reference Bao R-Y, Yang W, Wei X-F, Xie B-H, Yang M-B (2014) Enhanced formation of stereocomplex crystallites of high molecular weight poly(l-lactide)/poly(d-lactide) blends from melt by using poly(ethylene glycol). ACS Sustain Chem Eng 2:2301–2309CrossRef Bao R-Y, Yang W, Wei X-F, Xie B-H, Yang M-B (2014) Enhanced formation of stereocomplex crystallites of high molecular weight poly(l-lactide)/poly(d-lactide) blends from melt by using poly(ethylene glycol). ACS Sustain Chem Eng 2:2301–2309CrossRef
21.
go back to reference Tsuji H, Yamamoto S (2011) Enhanced stereocomplex crystallization of biodegradable enantiomeric poly(lactic acid)s by repeated casting. Macromol Mater Eng 296:583–589CrossRef Tsuji H, Yamamoto S (2011) Enhanced stereocomplex crystallization of biodegradable enantiomeric poly(lactic acid)s by repeated casting. Macromol Mater Eng 296:583–589CrossRef
22.
go back to reference Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A (2006) Electrospinning of poly(lactic acid) stereocomplex nanofibers. Biomacromol 7:3316–3320CrossRef Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A (2006) Electrospinning of poly(lactic acid) stereocomplex nanofibers. Biomacromol 7:3316–3320CrossRef
23.
go back to reference Tsuji H, Ikada Y, Hyon SH, Kimura Y, Kitao T (1994) Stereocomplex formation between enantiomeric poly(lactic acid). 8. Complex fibers spun from mixed-solution of poly(d-lactic acid) and poly(l-lactic acid). J Appl Polym Sci 51:337–344CrossRef Tsuji H, Ikada Y, Hyon SH, Kimura Y, Kitao T (1994) Stereocomplex formation between enantiomeric poly(lactic acid). 8. Complex fibers spun from mixed-solution of poly(d-lactic acid) and poly(l-lactic acid). J Appl Polym Sci 51:337–344CrossRef
24.
go back to reference Brzezinski M, Boguslawska M, Ilcikova M, Mosnacek J, Biela T (2012) Unusual thermal properties of polylactides and polylactide stereocomplexes containing polylactide-functionalized multi-walled carbon nanotubes. Macromolecules 45:8714–8721CrossRef Brzezinski M, Boguslawska M, Ilcikova M, Mosnacek J, Biela T (2012) Unusual thermal properties of polylactides and polylactide stereocomplexes containing polylactide-functionalized multi-walled carbon nanotubes. Macromolecules 45:8714–8721CrossRef
25.
go back to reference Biela T, Duda A, Penczek S (2006) Enhanced melt stability of star-shaped stereocomplexes as compared with linear stereocomplexes. Macromolecules 39:3710–3713CrossRef Biela T, Duda A, Penczek S (2006) Enhanced melt stability of star-shaped stereocomplexes as compared with linear stereocomplexes. Macromolecules 39:3710–3713CrossRef
26.
go back to reference Ma P, Jiang L, Xu P, Dong W, Chen M, Lemstra PJ (2015) Rapid stereocomplexation between enantiomeric comb-shaped cellulose-g-poly(L-lactide) nanohybrids and poly(D-lactide) from the melt. Biomacromol 16:3723–3729CrossRef Ma P, Jiang L, Xu P, Dong W, Chen M, Lemstra PJ (2015) Rapid stereocomplexation between enantiomeric comb-shaped cellulose-g-poly(L-lactide) nanohybrids and poly(D-lactide) from the melt. Biomacromol 16:3723–3729CrossRef
27.
go back to reference Bao R-Y, Yang W, Jiang W-R et al (2012) Stereocomplex formation of high-molecular-weight polylactide: a low temperature approach. Polymer 53:5449–5454CrossRef Bao R-Y, Yang W, Jiang W-R et al (2012) Stereocomplex formation of high-molecular-weight polylactide: a low temperature approach. Polymer 53:5449–5454CrossRef
28.
go back to reference Bai H, Liu H, Bai D et al (2014) Enhancing the melt stability of polylactide stereocomplexes using a solid-state cross-linking strategy during a melt-blending process. Polym Chem 5:5985–5993CrossRef Bai H, Liu H, Bai D et al (2014) Enhancing the melt stability of polylactide stereocomplexes using a solid-state cross-linking strategy during a melt-blending process. Polym Chem 5:5985–5993CrossRef
29.
go back to reference Jiang L, Wolcott MP, Zhang JW (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol 7:199–207CrossRef Jiang L, Wolcott MP, Zhang JW (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol 7:199–207CrossRef
30.
go back to reference Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95:2641–2647CrossRef Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95:2641–2647CrossRef
31.
go back to reference Weng YX, Jin YJ, Meng QY, Wang L, Zhang M, Wang YZ (2013) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test 32:918–926CrossRef Weng YX, Jin YJ, Meng QY, Wang L, Zhang M, Wang YZ (2013) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test 32:918–926CrossRef
32.
go back to reference Xiao H, Lu W, Yeh JT (2009) Crystallization behavior of fully biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. J Appl Polym Sci 112:3754–3763CrossRef Xiao H, Lu W, Yeh JT (2009) Crystallization behavior of fully biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. J Appl Polym Sci 112:3754–3763CrossRef
33.
go back to reference Gu SY, Zhang K, Ren J, Zhan H (2008) Melt rheology of polylactide/poly(butylene adipate- co -terephthalate) blends. Carbohydr Polym 74:79–85CrossRef Gu SY, Zhang K, Ren J, Zhan H (2008) Melt rheology of polylactide/poly(butylene adipate- co -terephthalate) blends. Carbohydr Polym 74:79–85CrossRef
34.
go back to reference Shi XQ, Ito H, Kikutani T (2005) Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers. Polymer 46:11442–11450CrossRef Shi XQ, Ito H, Kikutani T (2005) Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers. Polymer 46:11442–11450CrossRef
35.
go back to reference Cartier L, Takumi Okihara A, Lotz B (1997) Triangular polymer single crystals: stereocomplexes, twins, and frustrated structures. Macromolecules 30:6313–6322CrossRef Cartier L, Takumi Okihara A, Lotz B (1997) Triangular polymer single crystals: stereocomplexes, twins, and frustrated structures. Macromolecules 30:6313–6322CrossRef
Metadata
Title
Rapid preparation and continuous processing of polylactide stereocomplex crystallite below its melting point
Authors
Xin-Rui Gao
Ben Niu
Wen-Qiang Hua
Yue Li
Ling Xu
Yan Wang
Xu Ji
Gan-Ji Zhong
Zhong-Ming Li
Publication date
01-10-2018
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 7/2019
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-018-2544-2

Other articles of this Issue 7/2019

Polymer Bulletin 7/2019 Go to the issue

Premium Partners