Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 2/2020

26-11-2019

Rapid thermal annealing on the atomic layer-deposited zirconia thin film to enhance resistive switching characteristics

Authors: Yawar Abbas, In Sub Han, Andrey Sergeevich Sokolov, Yu-Rim Jeon, Changhwan Choi

Published in: Journal of Materials Science: Materials in Electronics | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The resistive switching random access memory (RRAM) device has received a great interest for the next-generation non-volatile memory application, and resistive switching (RS) characteristics are mainly affected by conductive oxygen vacancies ([Vo··]) within switching material. Various effective approaches with materials, doping, and thermal treatments have been attempted to achieve the stable RS behaviors. Particularly, thermal annealing is considered as an efficient knob to control [Vo··] compared to other approaches. However, research on thermal treatment still lacks results and further research efforts are still needed to improve the RS characteristics of the devices. In this work we investigated the RS characteristics of Ti/ZrOx/Pt-structured RRAM device in comparison without and with postrapid thermal annealing (RTA) temperature range under oxygen ambient. The as-fabricated device with atomic layer-deposited ZrOx switching layer exhibited conducting characteristics, which is related to a relatively high amount of [Vo··] within switching medium. It indicates that moderate amount of [Vo··] apparently determines the appropriate RS behaviors. With this regard, we modulated the [Vo··] in ZrOx thin films by employing RTA in the ranges of 500 °C to 800 °C at the oxygen ambient for 60 s. Unlike device without RTA, we observed the stable RS characteristics from device with RTA and device annealed at 700 °C exhibits the excellent bipolar RS characteristics such as higher Ron/Roff, smaller cycle-to-cycle switching variation, better endurance, and longer retention among RTA conditions, indicating moderate amount of [Vo··] formed within ZrOx thin film layer. Moreover, increasing ALD ZrOx thickness shows the further improvement in the RS characteristics and RTA on the thicker ZrOx device still improves the RS behaviors. This research indicates that modulating [Vo··] by fast thermal annealing on the ALD zirconia material can provide the proper RS characteristics of the non-volatile memory applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
3.
go back to reference Y. Abbas, Y.-R. Jeon, A.S. Sokolov, S. Kim, B. Ku, C. Choi, Sci. Rep. 8, 1228–1237 (2018)CrossRef Y. Abbas, Y.-R. Jeon, A.S. Sokolov, S. Kim, B. Ku, C. Choi, Sci. Rep. 8, 1228–1237 (2018)CrossRef
5.
go back to reference C. Ye, J. Wu, G. He, J. Zhang, T. Deng, P. He, H. Wang, J. Mater. Sci. Technol. 32, 1–11 (2016)CrossRef C. Ye, J. Wu, G. He, J. Zhang, T. Deng, P. He, H. Wang, J. Mater. Sci. Technol. 32, 1–11 (2016)CrossRef
7.
8.
go back to reference R. Waser, R. Dittmann, C. Staikov, K. Szot, Adv. Mater. 21, 2632–2663 (2009)CrossRef R. Waser, R. Dittmann, C. Staikov, K. Szot, Adv. Mater. 21, 2632–2663 (2009)CrossRef
9.
go back to reference C. Baeumer, C. Schmitz, A.H.H. Ramadan, H. Du, K. Skaja, V. Feyer, P. Muller, B. Arndt, C.L. Jia, J. Mayer, R.A. De Souza, C.M. Schneider, R. Waser, R. Dittmann, Nat. Commun. 6, 8610–8619 (2015)CrossRef C. Baeumer, C. Schmitz, A.H.H. Ramadan, H. Du, K. Skaja, V. Feyer, P. Muller, B. Arndt, C.L. Jia, J. Mayer, R.A. De Souza, C.M. Schneider, R. Waser, R. Dittmann, Nat. Commun. 6, 8610–8619 (2015)CrossRef
10.
go back to reference M. Kubicek, R. Schmitt, F. Messerschmitt, J.L.M. Rupp, ACS Nano 9, 10737–10748 (2015)CrossRef M. Kubicek, R. Schmitt, F. Messerschmitt, J.L.M. Rupp, ACS Nano 9, 10737–10748 (2015)CrossRef
11.
go back to reference L. Goux, P. Czarnecki, Y.Y. Chen, L. Pantisano, X.P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D.J. Wouters, L. Altimime, Appl. Phys. Lett. 97, 243509–243511 (2010)CrossRef L. Goux, P. Czarnecki, Y.Y. Chen, L. Pantisano, X.P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D.J. Wouters, L. Altimime, Appl. Phys. Lett. 97, 243509–243511 (2010)CrossRef
12.
go back to reference B. Ku, Y. Abbas, A.S. Sokolov, C. Choi, J. Alloys Compd. 735, 1181–1188 (2018)CrossRef B. Ku, Y. Abbas, A.S. Sokolov, C. Choi, J. Alloys Compd. 735, 1181–1188 (2018)CrossRef
13.
go back to reference M.R. Park, Y. Abbas, H. Abbas, Q. Hu, T.S. Lee, Y.J. Choi, T.S. Yoon, H.H. Lee, C.J. Kang, Microelectron. Eng. 159, 190–197 (2016)CrossRef M.R. Park, Y. Abbas, H. Abbas, Q. Hu, T.S. Lee, Y.J. Choi, T.S. Yoon, H.H. Lee, C.J. Kang, Microelectron. Eng. 159, 190–197 (2016)CrossRef
14.
go back to reference Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, Khoriba, H. Kumigashira, M. Oshima, IEEE International Electron Devices Meeting (IEDM) 1-4 (2008) Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, Khoriba, H. Kumigashira, M. Oshima, IEEE International Electron Devices Meeting (IEDM) 1-4 (2008)
15.
go back to reference Y. Abbas, M.R. Park, Q. Hu, T.S. Lee, H. Abbas, T.-S. Yoon, C.J. Kang, J. Nanosci. Nanotechnol. 16, 10231–10236 (2016)CrossRef Y. Abbas, M.R. Park, Q. Hu, T.S. Lee, H. Abbas, T.-S. Yoon, C.J. Kang, J. Nanosci. Nanotechnol. 16, 10231–10236 (2016)CrossRef
16.
go back to reference D. Acharyya, A. Hazra, P. Bhattacharyya, Microelectron. Reliab. 54, 541–560 (2014)CrossRef D. Acharyya, A. Hazra, P. Bhattacharyya, Microelectron. Reliab. 54, 541–560 (2014)CrossRef
17.
go back to reference D. Kumar, R. Aluguri, U. Chand, T.Y. Tseng, Ceramics Int. 43, S547–S556 (2017)CrossRef D. Kumar, R. Aluguri, U. Chand, T.Y. Tseng, Ceramics Int. 43, S547–S556 (2017)CrossRef
18.
19.
go back to reference A.V. Singh, M. Ferri, M. Tamplenizza, F. Borghi, G. Divitini, C. Ducati, C. Lenardi, C. Piazzoni, M. Merlini, A. Podestà, P. Milani, Nanotechnology. 23, 475101–475110 (2012)CrossRef A.V. Singh, M. Ferri, M. Tamplenizza, F. Borghi, G. Divitini, C. Ducati, C. Lenardi, C. Piazzoni, M. Merlini, A. Podestà, P. Milani, Nanotechnology. 23, 475101–475110 (2012)CrossRef
20.
21.
go back to reference H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Appl. Phys. Lett. 98, 042105–042108 (2010)CrossRef H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Appl. Phys. Lett. 98, 042105–042108 (2010)CrossRef
22.
go back to reference W. Guan, S. Long, Q. Liu, M. Liu, W. Wang, IEEE Electron Device Lett. 29, 434–437 (2008)CrossRef W. Guan, S. Long, Q. Liu, M. Liu, W. Wang, IEEE Electron Device Lett. 29, 434–437 (2008)CrossRef
23.
go back to reference B. Sun, Y.X. Liu, L.F. Liu, N. Xu, Y. Wang, X.Y. Liu, R.Q. Han, J.F. Kang, J. Appl. Phys. 105, 061630–061633 (2009)CrossRef B. Sun, Y.X. Liu, L.F. Liu, N. Xu, Y. Wang, X.Y. Liu, R.Q. Han, J.F. Kang, J. Appl. Phys. 105, 061630–061633 (2009)CrossRef
24.
go back to reference Y.C. Jung, S. Seong, T. Lee, S.Y. Kim, I.S. Park, J. Ahn, Appl. Surf. Sci. 435, 117–121 (2018)CrossRef Y.C. Jung, S. Seong, T. Lee, S.Y. Kim, I.S. Park, J. Ahn, Appl. Surf. Sci. 435, 117–121 (2018)CrossRef
25.
go back to reference L. Zhang, H. Xu, Z. Wang, X. Zhao, J. Ma, Y. Liu, Mater. Lett. 154, 98–102 (2015)CrossRef L. Zhang, H. Xu, Z. Wang, X. Zhao, J. Ma, Y. Liu, Mater. Lett. 154, 98–102 (2015)CrossRef
26.
go back to reference Y. Li, S. Long, H. Lv, Q. Liu, Y. Wang, S. Zhang, W. Lian, M. Wang, K. Zhang, H. Xie, S. Liu, M. Liu, Nanotechnology. 22, 254028–254032 (2011)CrossRef Y. Li, S. Long, H. Lv, Q. Liu, Y. Wang, S. Zhang, W. Lian, M. Wang, K. Zhang, H. Xie, S. Liu, M. Liu, Nanotechnology. 22, 254028–254032 (2011)CrossRef
27.
go back to reference S. Lee, J.S. Lee, J.B. Park, Y.K. Kyoung, M.J. Lee, T.W. Noh, APL Mater. 2, 066103 (2014)CrossRef S. Lee, J.S. Lee, J.B. Park, Y.K. Kyoung, M.J. Lee, T.W. Noh, APL Mater. 2, 066103 (2014)CrossRef
29.
go back to reference S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, Adv. Funct. Mater. 21, 4487–4492 (2011)CrossRef S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, Adv. Funct. Mater. 21, 4487–4492 (2011)CrossRef
30.
go back to reference R. Schmitt, J. Spring, R. Korobko, J.L.M. Rupp, ACS Nano 11, 8881–8891 (2017)CrossRef R. Schmitt, J. Spring, R. Korobko, J.L.M. Rupp, ACS Nano 11, 8881–8891 (2017)CrossRef
31.
go back to reference H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Appl. Phys. Lett. 98, 042107 (2011)CrossRef H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Appl. Phys. Lett. 98, 042107 (2011)CrossRef
32.
34.
go back to reference I. Kärkkänen, A. Shkabko, M. Heikkilä, J. Niinistö, M. Ritala, M. Leskelä, S. Hoffmann-Eifert, R. Waser, Phys. Status Solidi Appl. Mater. Sci. 211, 301 (2014)CrossRef I. Kärkkänen, A. Shkabko, M. Heikkilä, J. Niinistö, M. Ritala, M. Leskelä, S. Hoffmann-Eifert, R. Waser, Phys. Status Solidi Appl. Mater. Sci. 211, 301 (2014)CrossRef
35.
go back to reference O. G. Ossorio, S. Dueñas, H. Castán, A. Tamm, K. Kalam, H. Seemen, and K. Kukli, In: Proc. 2018 12th Spanish Conf. Electron Devices, CDE 1 (2018) O. G. Ossorio, S. Dueñas, H. Castán, A. Tamm, K. Kalam, H. Seemen, and K. Kukli, In: Proc. 2018 12th Spanish Conf. Electron Devices, CDE 1 (2018)
36.
go back to reference T.L. Tasi, T.H. Han, T.Y. Tseng, J. Phys. D Appl. Phys. 48, 035108–035113 (2015)CrossRef T.L. Tasi, T.H. Han, T.Y. Tseng, J. Phys. D Appl. Phys. 48, 035108–035113 (2015)CrossRef
37.
go back to reference H. Zhai, J. Kong, J. Yang, J. Xu, Q. Xu, H. Sun, A. Li, D. Wu, J. Mat. Sci. Tech. 32, 676–680 (2016)CrossRef H. Zhai, J. Kong, J. Yang, J. Xu, Q. Xu, H. Sun, A. Li, D. Wu, J. Mat. Sci. Tech. 32, 676–680 (2016)CrossRef
38.
go back to reference W.Y. Jian, H.S. You, C.Y. Wu, Jpn. J. Appl. Phy. 57, 011501–011506 (2018)CrossRef W.Y. Jian, H.S. You, C.Y. Wu, Jpn. J. Appl. Phy. 57, 011501–011506 (2018)CrossRef
39.
40.
go back to reference X. Wei, H. Huang, C. Ye, W. Wei, H. Zhou, Y. Chen, R. Zhang, L. Zhang, Q. Xia, J. Alloys. Comp. 775, 1301–1306 (2019)CrossRef X. Wei, H. Huang, C. Ye, W. Wei, H. Zhou, Y. Chen, R. Zhang, L. Zhang, Q. Xia, J. Alloys. Comp. 775, 1301–1306 (2019)CrossRef
41.
go back to reference B.G. Son, S.Y. Je, H.J. Kim, C.K. Lee, A.Y. Hwang, J.Y. Won, J.H. Song, R. Choi, J.K. Jeong, Phys. Status Solidi Rapid Res. Lett. 7, 485–488 (2013)CrossRef B.G. Son, S.Y. Je, H.J. Kim, C.K. Lee, A.Y. Hwang, J.Y. Won, J.H. Song, R. Choi, J.K. Jeong, Phys. Status Solidi Rapid Res. Lett. 7, 485–488 (2013)CrossRef
42.
go back to reference S. Vempati, F. Kayaci-Senirmak, C. Ozgit-Akgun, N. Biyikli, T. Uyar, J. Phys. Chem. C 119, 23268–23273 (2015)CrossRef S. Vempati, F. Kayaci-Senirmak, C. Ozgit-Akgun, N. Biyikli, T. Uyar, J. Phys. Chem. C 119, 23268–23273 (2015)CrossRef
43.
go back to reference Y. Abbas, A.S. Sokolov, Y.-R. Jeon, S. Kim, B. Ku, C. Choi, J. Alloys Compd. 759, 44–51 (2018)CrossRef Y. Abbas, A.S. Sokolov, Y.-R. Jeon, S. Kim, B. Ku, C. Choi, J. Alloys Compd. 759, 44–51 (2018)CrossRef
45.
go back to reference D. Wang, H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. Disalvo, H.D. Abruña, Nat. Mater. 12, 81–87 (2013)CrossRef D. Wang, H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. Disalvo, H.D. Abruña, Nat. Mater. 12, 81–87 (2013)CrossRef
46.
go back to reference F. Nardi, S. Larentis, S. Balatti, D.C. Gilmer, D. Ielmini, I.E.E.E. Trans, Electron Devices 59, 2468–2475 (2012)CrossRef F. Nardi, S. Larentis, S. Balatti, D.C. Gilmer, D. Ielmini, I.E.E.E. Trans, Electron Devices 59, 2468–2475 (2012)CrossRef
47.
go back to reference S. Ambrogio, S. Balatti, D.C. Gilmer, D. Ielmini, I.E.E.E. Trans, Electron Dev. 61, 2912–2919 (2014)CrossRef S. Ambrogio, S. Balatti, D.C. Gilmer, D. Ielmini, I.E.E.E. Trans, Electron Dev. 61, 2912–2919 (2014)CrossRef
Metadata
Title
Rapid thermal annealing on the atomic layer-deposited zirconia thin film to enhance resistive switching characteristics
Authors
Yawar Abbas
In Sub Han
Andrey Sergeevich Sokolov
Yu-Rim Jeon
Changhwan Choi
Publication date
26-11-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 2/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02598-x

Other articles of this Issue 2/2020

Journal of Materials Science: Materials in Electronics 2/2020 Go to the issue