Skip to main content
Top
Published in: Telecommunication Systems 3/2016

01-07-2016

RDTP: reliable data transport protocol in wireless sensor networks

Authors: Ali Barati, Ali Movaghar, Masoud Sabaei

Published in: Telecommunication Systems | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper deals with a new reliable data transport protocol for wireless sensor networks, referred as RDTP. One of the most prominent challenges in wireless sensor networks is reliable transport of data from sensor nodes to sink node. For designing protocols for such networks hardware, some constraining factors associated with energy and processing power must be taken into consideration. There are two generic methods, ARQ and FEC to achieve reliable data transport. Here, a reliable data transport protocol for wireless sensor networks is proposed, in which an efficient moduli set in redundant residue number system has been employed. The modulus set is exploited as a means for adding redundancy to transmitted data. Error controlling in proposed method is performed in a hop by hop manner. The simulation results indicate that the proposed method shows significant decreases in the energy consumption, compared to similar methods. The results also show that this leads to a rise in packet delivery ratio, with a simultaneous reduction in end to end delay.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mahmood, M. A., Seah, W. K., & Welch, I. (2015). Reliability in wireless sensor networks: A survey and challenges ahead. Computer Networks, 79, 166–187.CrossRef Mahmood, M. A., Seah, W. K., & Welch, I. (2015). Reliability in wireless sensor networks: A survey and challenges ahead. Computer Networks, 79, 166–187.CrossRef
2.
go back to reference Fortino, G., Bal, M., Li, W., & Shen, W. (2015). Collaborative wireless sensor networks: Architectures, algorithms and applications. Information Fusion, 22, 1–2.CrossRef Fortino, G., Bal, M., Li, W., & Shen, W. (2015). Collaborative wireless sensor networks: Architectures, algorithms and applications. Information Fusion, 22, 1–2.CrossRef
3.
go back to reference Hammoudeh, M., & Newman, R. (2015). Adaptive routing in wireless sensor networks: QoS optimisation for enhanced application performance. Information Fusion, 22, 3–15.CrossRef Hammoudeh, M., & Newman, R. (2015). Adaptive routing in wireless sensor networks: QoS optimisation for enhanced application performance. Information Fusion, 22, 3–15.CrossRef
4.
go back to reference Mitra, S., & Roy, A. (2015). Communication void free routing protocol in wireless sensor network. Wireless Personal Communications, 82(4), 2567–2581.CrossRef Mitra, S., & Roy, A. (2015). Communication void free routing protocol in wireless sensor network. Wireless Personal Communications, 82(4), 2567–2581.CrossRef
5.
go back to reference Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.CrossRef Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.CrossRef
6.
go back to reference Somasundara, A., Kansal, A., Jea, D. D., Estrin, D., & Srivastava, M. B. (2006). Controllably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing, 5(8), 958–973.CrossRef Somasundara, A., Kansal, A., Jea, D. D., Estrin, D., & Srivastava, M. B. (2006). Controllably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing, 5(8), 958–973.CrossRef
7.
go back to reference Shah, K., Di Francesco, M., Anastasi, G., & Kumar, M. (2011). A framework for resource-aware data accumulation in sparse wireless sensor networks. Computer Communications, 34(17), 2094–2103.CrossRef Shah, K., Di Francesco, M., Anastasi, G., & Kumar, M. (2011). A framework for resource-aware data accumulation in sparse wireless sensor networks. Computer Communications, 34(17), 2094–2103.CrossRef
8.
go back to reference Vuran, M. C., & Akyildiz, I. F. (2009). Error control in wireless sensor networks: a cross layer analy-sis. IEEE/ACM Transactions on Networking, 17(4), 1186–1199.CrossRef Vuran, M. C., & Akyildiz, I. F. (2009). Error control in wireless sensor networks: a cross layer analy-sis. IEEE/ACM Transactions on Networking, 17(4), 1186–1199.CrossRef
9.
go back to reference Xie, P., Zhou, Z., Peng, Z., Cui, J. H., & Shi, Z. (2010). SDRT: A reliable data transport protocol for underwater sensor networks. Ad Hoc Networks, 8(7), 708–722.CrossRef Xie, P., Zhou, Z., Peng, Z., Cui, J. H., & Shi, Z. (2010). SDRT: A reliable data transport protocol for underwater sensor networks. Ad Hoc Networks, 8(7), 708–722.CrossRef
10.
go back to reference Iyer, Y. G., Gandham, S., & Venkatesan, S. (2005, October). STCP: A generic transport layer protocol for wireless sensor networks. In Proceedings of the 14th international conference on computer communications and networks (pp. 449-454), ICCCN 2005. New York: IEEE Press. Iyer, Y. G., Gandham, S., & Venkatesan, S. (2005, October). STCP: A generic transport layer protocol for wireless sensor networks. In Proceedings of the 14th international conference on computer communications and networks (pp. 449-454), ICCCN 2005. New York: IEEE Press.
11.
go back to reference Marchi, B., Grilo, A., & Nunes, M. (2007, July). DTSN: Distributed transport for sensor networks. In 12th IEEE symposium on computers and communications (pp. 165–172), ISCC 2007. Marchi, B., Grilo, A., & Nunes, M. (2007, July). DTSN: Distributed transport for sensor networks. In 12th IEEE symposium on computers and communications (pp. 165–172), ISCC 2007.
12.
go back to reference Wan, C. Y., Campbell, A. T., & Krishnamurthy, L. (2005). Pump-slowly, fetch-quickly (PSFQ): A reliable transport protocol for sensor networks. IEEE Journal on Selected Areas in Communications, 23(4), 862–872.CrossRef Wan, C. Y., Campbell, A. T., & Krishnamurthy, L. (2005). Pump-slowly, fetch-quickly (PSFQ): A reliable transport protocol for sensor networks. IEEE Journal on Selected Areas in Communications, 23(4), 862–872.CrossRef
13.
go back to reference Mahmood, M. A., & Seah, W. K. (2012). Reliability in wireless sensor networks: Survey and challenges ahead. Wellington: School of Engineering and Computer Science, Victoria University of Wellington. Mahmood, M. A., & Seah, W. K. (2012). Reliability in wireless sensor networks: Survey and challenges ahead. Wellington: School of Engineering and Computer Science, Victoria University of Wellington.
14.
go back to reference Srouji, M. S., Wang, Z., & Henkel, J. (2011, December). RDTS: A reliable erasure-coding based data transfer scheme for wireless sensor networks. In 2011 IEEE 17th international conference on parallel and distributed systems (ICPADS) (pp. 481–488). Srouji, M. S., Wang, Z., & Henkel, J. (2011, December). RDTS: A reliable erasure-coding based data transfer scheme for wireless sensor networks. In 2011 IEEE 17th international conference on parallel and distributed systems (ICPADS) (pp. 481–488).
15.
go back to reference Stann, F., & Heidemann, J. (2003, May). RMST: Reliable data transport in sensor networks. In Proceedings of the first IEEE international workshop onsensor network protocols and applications (pp. 102–112). IEEE. Stann, F., & Heidemann, J. (2003, May). RMST: Reliable data transport in sensor networks. In Proceedings of the first IEEE international workshop onsensor network protocols and applications (pp. 102–112). IEEE.
16.
go back to reference Park, S. J., Sivakumar, R., Akyildiz, I. F., & Vedantham, R. (2008). GARUDA: Achieving effective reliability for downstream communication in wireless sensor networks. IEEE Transactions on Mobile Computing, 7(2), 214–230.CrossRef Park, S. J., Sivakumar, R., Akyildiz, I. F., & Vedantham, R. (2008). GARUDA: Achieving effective reliability for downstream communication in wireless sensor networks. IEEE Transactions on Mobile Computing, 7(2), 214–230.CrossRef
17.
go back to reference Wu, C., Ji, Y., Xu, J., Ohzahata, S., & Kato, T. (2014). Coded packets over lossy links: A redundancy-based mechanism for reliable and fast data collection in sensor networks. Computer Networks, 70, 179–191.CrossRef Wu, C., Ji, Y., Xu, J., Ohzahata, S., & Kato, T. (2014). Coded packets over lossy links: A redundancy-based mechanism for reliable and fast data collection in sensor networks. Computer Networks, 70, 179–191.CrossRef
18.
go back to reference Hosseinzadeh, M., Molahosseini, A. S., & Navi, K. (2008). An improved reverse converter for the moduli set \(\{2^n-1, 2^n, 2^n+1, 2^{n+1}-1\}\). IEICE Electronics Express, 5(17), 672–677.CrossRef Hosseinzadeh, M., Molahosseini, A. S., & Navi, K. (2008). An improved reverse converter for the moduli set \(\{2^n-1, 2^n, 2^n+1, 2^{n+1}-1\}\). IEICE Electronics Express, 5(17), 672–677.CrossRef
19.
go back to reference Garner, H. L. (1959). The residue number system. IRE Transactions on Electronic Computers, 2, 140–147.CrossRef Garner, H. L. (1959). The residue number system. IRE Transactions on Electronic Computers, 2, 140–147.CrossRef
20.
go back to reference Navi, K., Molahosseini, A. S., & Esmaeildoust, M. (2011). How to teach residue number system to computer scientists and engineers. IEEE Transactions on Education, 54(1), 156–163.CrossRef Navi, K., Molahosseini, A. S., & Esmaeildoust, M. (2011). How to teach residue number system to computer scientists and engineers. IEEE Transactions on Education, 54(1), 156–163.CrossRef
21.
go back to reference Conway, R., & Nelson, J. (2004). Improved RNS FIR filter architectures. IEEE Transactions on Circuits and Systems II: Express Briefs, 51(1), 26–28.CrossRef Conway, R., & Nelson, J. (2004). Improved RNS FIR filter architectures. IEEE Transactions on Circuits and Systems II: Express Briefs, 51(1), 26–28.CrossRef
22.
go back to reference Bajard, J. C., & Imbert, L. (2004). A full implementation RSA in RNS. IEEE Transactions on Computers, 53(6), 769–774.CrossRef Bajard, J. C., & Imbert, L. (2004). A full implementation RSA in RNS. IEEE Transactions on Computers, 53(6), 769–774.CrossRef
23.
go back to reference Ramrez, J., Garca, A., Meyer-Baese, U., & Lloris, A. (2002). Fast RNS FPL-based communications receiver design and implementation. In Field-programmable logic and applications: Reconfigurable computing is going mainstream (pp. 472–481). Berlin: Springer Heidelberg. Ramrez, J., Garca, A., Meyer-Baese, U., & Lloris, A. (2002). Fast RNS FPL-based communications receiver design and implementation. In Field-programmable logic and applications: Reconfigurable computing is going mainstream (pp. 472–481). Berlin: Springer Heidelberg.
24.
go back to reference Taylor, F. J. (1984). Residue arithmetic: A tutorial with examples. Computer, 17(5), 50–62.CrossRef Taylor, F. J. (1984). Residue arithmetic: A tutorial with examples. Computer, 17(5), 50–62.CrossRef
25.
go back to reference Sengupta, A., & Natarajan, B. (2014). Redundant residue number system based space-time block codes. Physical Communication, 12, 1–15.CrossRef Sengupta, A., & Natarajan, B. (2014). Redundant residue number system based space-time block codes. Physical Communication, 12, 1–15.CrossRef
26.
go back to reference Barsi, F., & Maestrini, P. (1973). Error correcting properties of redundant residue number systems. IEEE Transactions on Computers, 100(3), 307–315.CrossRef Barsi, F., & Maestrini, P. (1973). Error correcting properties of redundant residue number systems. IEEE Transactions on Computers, 100(3), 307–315.CrossRef
27.
go back to reference Kinoshita, E., & Lee, K. J. (1997). A residue arithmetic extension for reliable scientific computation. IEEE Transactions on Computers, 46(2), 129–138.CrossRef Kinoshita, E., & Lee, K. J. (1997). A residue arithmetic extension for reliable scientific computation. IEEE Transactions on Computers, 46(2), 129–138.CrossRef
28.
go back to reference Haron, N. Z., & Hamdioui, S. (2011). Redundant residue number system code for fault-tolerant hybrid memories. ACM Journal on Emerging Technologies in Computing Systems (JETC), 7(1), 4. Haron, N. Z., & Hamdioui, S. (2011). Redundant residue number system code for fault-tolerant hybrid memories. ACM Journal on Emerging Technologies in Computing Systems (JETC), 7(1), 4.
29.
go back to reference Matutino, P. M., Chaves, R., & Sousa, L. (2014). An efficient scalable RNS architecture for large dynamic ranges. Journal of Signal Processing Systems, 77(1–2), 191–205. Matutino, P. M., Chaves, R., & Sousa, L. (2014). An efficient scalable RNS architecture for large dynamic ranges. Journal of Signal Processing Systems, 77(1–2), 191–205.
30.
go back to reference Modiri, S., Movaghar, A., & Barati, A. (2012). Study of error control capability for the new moduli set \(\{2^{2n+1}+2^n-1, 2^{2n+1}-1, 2^n-1, 2^{2n}, 2^{2n+1}-1\}\). Journal of Advanced Computer Science & Technology, 1(4), 176–186.CrossRef Modiri, S., Movaghar, A., & Barati, A. (2012). Study of error control capability for the new moduli set \(\{2^{2n+1}+2^n-1, 2^{2n+1}-1, 2^n-1, 2^{2n}, 2^{2n+1}-1\}\). Journal of Advanced Computer Science & Technology, 1(4), 176–186.CrossRef
31.
go back to reference Modiri, S., Movaghar, A., & Barati, A. (2012). An efficient reverse converter for the new modulus set \(\{2^{2n+2}1, 2^{2n+1}1,2^n \}\). International Journal of Advanced Research in Computer Science and Software Engineering, 2(8), 447–452. Modiri, S., Movaghar, A., & Barati, A. (2012). An efficient reverse converter for the new modulus set \(\{2^{2n+2}1, 2^{2n+1}1,2^n \}\). International Journal of Advanced Research in Computer Science and Software Engineering, 2(8), 447–452.
32.
go back to reference Piestrak, S. J. (1995). A high speed realization of a residue to binary converter. IEEE Transactions on circuits and systems. II, Analogue and digital Signal Processing, 42(10), 661–663. Piestrak, S. J. (1995). A high speed realization of a residue to binary converter. IEEE Transactions on circuits and systems. II, Analogue and digital Signal Processing, 42(10), 661–663.
33.
go back to reference Molahosseini, A. S., Navi, K., Dadkhah, C., Kavehei, O., & Timarchi, S. (2010). Efficient reverse converter designs for the new 4-moduli sets and based on new CRTs. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(4), 823–835.CrossRef Molahosseini, A. S., Navi, K., Dadkhah, C., Kavehei, O., & Timarchi, S. (2010). Efficient reverse converter designs for the new 4-moduli sets and based on new CRTs. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(4), 823–835.CrossRef
34.
go back to reference Wang, W., Swamy, M. N. S., Ahmad, M. O., & Wang, Y. (2000). A high-speed residue-to-binary converter for three-moduli (\(2^k, 2^{k-1}, 2^{k-1}-1\)) RNS and a scheme for its VLSI implementation. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(12), 1576–1581.CrossRef Wang, W., Swamy, M. N. S., Ahmad, M. O., & Wang, Y. (2000). A high-speed residue-to-binary converter for three-moduli (\(2^k, 2^{k-1}, 2^{k-1}-1\)) RNS and a scheme for its VLSI implementation. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(12), 1576–1581.CrossRef
35.
go back to reference Mohan, P. A., & Premkumar, A. B. (2007). RNS-to-binary converters for two four-moduli sets \( \{2^n-1, 2^n, 2^n+1, 2^{n+1}-1\} \) and \(\{2^n-1, 2^n, 2^n+1, 2^{n+1}+1 \}\). IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6), 1245–1254.CrossRef Mohan, P. A., & Premkumar, A. B. (2007). RNS-to-binary converters for two four-moduli sets \( \{2^n-1, 2^n, 2^n+1, 2^{n+1}-1\} \) and \(\{2^n-1, 2^n, 2^n+1, 2^{n+1}+1 \}\). IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6), 1245–1254.CrossRef
36.
go back to reference Sheu, M. H., Lin, S. H., Chen, C., & Yang, S. W. (2004). An efficient VLSI design for a residue to binary converter for general balance moduli \(\{2^n-3, 2^n-1, 2^n+1, 2^n+3\}\). IEEE Transactions on Circuits and Systems II: Express Briefs, 51(3), 152–155.CrossRef Sheu, M. H., Lin, S. H., Chen, C., & Yang, S. W. (2004). An efficient VLSI design for a residue to binary converter for general balance moduli \(\{2^n-3, 2^n-1, 2^n+1, 2^n+3\}\). IEEE Transactions on Circuits and Systems II: Express Briefs, 51(3), 152–155.CrossRef
37.
go back to reference Cao, B., Srikanthan, T., & Chang, C. H. (2005). Efficient reverse converters for four-moduli sets \(\{2^n-1, 2^n, 2^n+1, 2^{n+1}-1\}\) and \( \{2^n-1, 2^n, 2^n+1, 2^{n-1}-1\} \). IEE Proceedings-Computers and Digital Techniques, 152(5), 687–696.CrossRef Cao, B., Srikanthan, T., & Chang, C. H. (2005). Efficient reverse converters for four-moduli sets \(\{2^n-1, 2^n, 2^n+1, 2^{n+1}-1\}\) and \( \{2^n-1, 2^n, 2^n+1, 2^{n-1}-1\} \). IEE Proceedings-Computers and Digital Techniques, 152(5), 687–696.CrossRef
38.
go back to reference Mohan, P. A. (2008). New reverse converters for the moduli set \(\{2^n-3, 2^n-1, 2^n+1, 2^n+3\}\). AEU-International Journal of Electronics and Communications, 62(9), 643–658.CrossRef Mohan, P. A. (2008). New reverse converters for the moduli set \(\{2^n-3, 2^n-1, 2^n+1, 2^n+3\}\). AEU-International Journal of Electronics and Communications, 62(9), 643–658.CrossRef
39.
go back to reference Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications magazine, 40(8), 102–114.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications magazine, 40(8), 102–114.CrossRef
Metadata
Title
RDTP: reliable data transport protocol in wireless sensor networks
Authors
Ali Barati
Ali Movaghar
Masoud Sabaei
Publication date
01-07-2016
Publisher
Springer US
Published in
Telecommunication Systems / Issue 3/2016
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-015-0098-2

Other articles of this Issue 3/2016

Telecommunication Systems 3/2016 Go to the issue