Skip to main content
Top

2022 | OriginalPaper | Chapter

11. Reaction Mechanisms and Fuel Surrogates for Naphtha/Low Octane Fractions-Application for Gasoline Compression Ignition Engine

Authors : Harsimran Singh, Avinash Kumar Agarwal

Published in: Gasoline Compression Ignition Technology

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Internal combustion engines are a prime mover in almost 99.8% of global transport vehicles, whereas 95% of the total driving energy still comes from petroleum-derived liquid fuels. Meeting emissions legislations is still a matter of concern for various automotive industries, which motivated them to devise cleaner and more efficient combustion concepts. Gasoline Compression Ignition (GCI) is one of those advanced low-temperature combustions (LTC) ideas that utilise relatively less processed petroleum fractions called Naphtha/Low octane fractions (LOF’s), offering indicated efficiency in the order of 50% or above and limits NOx and soot emissions simultaneously. Because of the unavailability of naphtha for research purposes, researchers have formulated different naphtha fuel surrogates (for experiments) and chemical reaction mechanisms (for numerical studies). This chapter starts with an overview of various LTC combustion strategies and a brief discussion about GCI combustion technology. Naphtha properties and generalised reaction pathways for gasoline have been discussed afterwards. After that, detailed literature focused on available reaction mechanisms and surrogates for low octane fractions. Overall, this chapter aims to cover most of the literature published on detailed and reduced chemical kinetic mechanisms and fuel surrogates that can efficiently mimic low octane fractions’ chemical, physical, and combustion characteristics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agarwal AK, Singh AP, Maurya RK (2017) Evolution, challenges, and path forward for low-temperature combustion engines. Prog Energy Combust Sci 61:1–56CrossRef Agarwal AK, Singh AP, Maurya RK (2017) Evolution, challenges, and path forward for low-temperature combustion engines. Prog Energy Combust Sci 61:1–56CrossRef
go back to reference Ahmed SS, Mauß F, Moréac G, Zeuch T (2007) Phys Chem Chem Phys 9:1107–1126CrossRef Ahmed SS, Mauß F, Moréac G, Zeuch T (2007) Phys Chem Chem Phys 9:1107–1126CrossRef
go back to reference Ahmed A, Khurshid M, Naser N, Badra J, Gaillard P, Chung SH, Sarathy M (2015) Surrogate fuel formulation for light naphtha combustion in advanced combustion engines Ahmed A, Khurshid M, Naser N, Badra J, Gaillard P, Chung SH, Sarathy M (2015) Surrogate fuel formulation for light naphtha combustion in advanced combustion engines
go back to reference Akihama K, Kosaka H, Hotta Y, Nishikawa K, Inagaki K, Fuyuto T, Weissman W (2009) An investigation of high load (compression ignition) operation of the “naphtha engine”– a combustion strategy for low well-to-wheel CO2 emissions. SAE Int J Fuels Lubr 1(1):920–932 Akihama K, Kosaka H, Hotta Y, Nishikawa K, Inagaki K, Fuyuto T, Weissman W (2009) An investigation of high load (compression ignition) operation of the “naphtha engine”– a combustion strategy for low well-to-wheel CO2 emissions. SAE Int J Fuels Lubr 1(1):920–932
go back to reference Al Rashidi MJ, Mehl M, Pitz WJ, Mohamed S, Sarathy SM (2017) Cyclopentane combustion chemistry. Part I: mechanism development and computational kinetics. Combust Flame 183:358–371 Al Rashidi MJ, Mehl M, Pitz WJ, Mohamed S, Sarathy SM (2017) Cyclopentane combustion chemistry. Part I: mechanism development and computational kinetics. Combust Flame 183:358–371
go back to reference Al Rashidi MJ, Mármol JC, Banyon C, Sajid MB, Mehl M, Pitz WJ, Mohamed S, Alfazazi A, Lu T, Curran HJ (2017) Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation. Combust Flame 183:372–385 Al Rashidi MJ, Mármol JC, Banyon C, Sajid MB, Mehl M, Pitz WJ, Mohamed S, Alfazazi A, Lu T, Curran HJ (2017) Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation. Combust Flame 183:372–385
go back to reference Alabbad M, Issayev G, Badra J, Voice AK, Giri BR, Djebbi K, Farooq A (2018) Autoignition of straight-run naphtha: a promising fuel for advanced compression ignition engines. Combust Flame 189:337–346CrossRef Alabbad M, Issayev G, Badra J, Voice AK, Giri BR, Djebbi K, Farooq A (2018) Autoignition of straight-run naphtha: a promising fuel for advanced compression ignition engines. Combust Flame 189:337–346CrossRef
go back to reference Andrae JCG (2008) Development of a detailed kinetic model for gasoline surrogate fuels. Fuel 87:2013–2022CrossRef Andrae JCG (2008) Development of a detailed kinetic model for gasoline surrogate fuels. Fuel 87:2013–2022CrossRef
go back to reference Andrae JCG, Brinck T, Kalghatgi GT (2008) HCCI experiments with toluene reference fuels modelled by a semi-detailed chemical kinetic model. Combust Flame 155:696–712CrossRef Andrae JCG, Brinck T, Kalghatgi GT (2008) HCCI experiments with toluene reference fuels modelled by a semi-detailed chemical kinetic model. Combust Flame 155:696–712CrossRef
go back to reference Aroonsrisopon T, Sohm V, Werner P, Foster DE, Morikawa T, Iida M (2002) An investigation into the effect of fuel composition on HCCI combustion characteristics. SAE Paper 2002–01–2830 Aroonsrisopon T, Sohm V, Werner P, Foster DE, Morikawa T, Iida M (2002) An investigation into the effect of fuel composition on HCCI combustion characteristics. SAE Paper 2002–01–2830
go back to reference Benajes J, Molina S, García A, Monsalve-Serrano J (2015) Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity-controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy 90:1261–1271CrossRef Benajes J, Molina S, García A, Monsalve-Serrano J (2015) Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity-controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy 90:1261–1271CrossRef
go back to reference Benjumea P, Agudelo J, Agudelo A (2008) Basic properties of palm oil biodiesel–diesel blends. Fuel 87:2069–2075CrossRef Benjumea P, Agudelo J, Agudelo A (2008) Basic properties of palm oil biodiesel–diesel blends. Fuel 87:2069–2075CrossRef
go back to reference Bessonette P, Schleyer C, Duffy K, Hardy W, Liechty M (2007) Effects of fuel property changes on heavy-duty HCCI combustion. Polymer 2013:04–08 Bessonette P, Schleyer C, Duffy K, Hardy W, Liechty M (2007) Effects of fuel property changes on heavy-duty HCCI combustion. Polymer 2013:04–08
go back to reference Bhattacharjee B, Schwer DA, Barton PI, Green WH (2003) Combust Flame 135:191–208CrossRef Bhattacharjee B, Schwer DA, Barton PI, Green WH (2003) Combust Flame 135:191–208CrossRef
go back to reference Bounaceur R, Da Costa I, Fournet R, Billaud F, Battin- Leclerc F (2004) Int J Chem Kinet 37(1):25–49CrossRef Bounaceur R, Da Costa I, Fournet R, Billaud F, Battin- Leclerc F (2004) Int J Chem Kinet 37(1):25–49CrossRef
go back to reference Brakora JL, Ra Y, Reitz RD, Mcfarlane J, Daw CS (2008) Development, and validation of a reduced reaction mechanism for biodiesel fueled engine simulations. SAE Paper 2008–01–1378 Brakora JL, Ra Y, Reitz RD, Mcfarlane J, Daw CS (2008) Development, and validation of a reduced reaction mechanism for biodiesel fueled engine simulations. SAE Paper 2008–01–1378
go back to reference Castanet G, Lavieille P, Lebouché M, Lemoine F (2003) Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-colour laser-induced fluorescence. Exp Fluids 35:563–571CrossRef Castanet G, Lavieille P, Lebouché M, Lemoine F (2003) Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-colour laser-induced fluorescence. Exp Fluids 35:563–571CrossRef
go back to reference Chaos M, Zhao Z, Kazakov A, Gokulakrishnan P, Angioletti M, Dryer F (2007) Proceedings of the 5th US. Combustion Meeting; San Diego, CA, March 25−28 2007 Chaos M, Zhao Z, Kazakov A, Gokulakrishnan P, Angioletti M, Dryer F (2007) Proceedings of the 5th US. Combustion Meeting; San Diego, CA, March 25−28 2007
go back to reference Chen LY, Chen YH, Hung YS, Chiang TH, Tsai CH (2013) Fuel properties and combustion characteristics of jatropha oil biodiesel–diesel blends. J Taiwan Inst Chem Eng 44:214–220CrossRef Chen LY, Chen YH, Hung YS, Chiang TH, Tsai CH (2013) Fuel properties and combustion characteristics of jatropha oil biodiesel–diesel blends. J Taiwan Inst Chem Eng 44:214–220CrossRef
go back to reference Ciezki HK, Adomeit G (1993) Combust Flame 93:412–433 Ciezki HK, Adomeit G (1993) Combust Flame 93:412–433
go back to reference Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (1998) A comprehensive modelling study of n-heptane oxidation. Combust Flame 114(1–2):149–177CrossRef Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (1998) A comprehensive modelling study of n-heptane oxidation. Combust Flame 114(1–2):149–177CrossRef
go back to reference Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (2002) A comprehensive modelling study of iso-octane oxidation. Combust Flame 129(3):253–280CrossRef Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (2002) A comprehensive modelling study of iso-octane oxidation. Combust Flame 129(3):253–280CrossRef
go back to reference Dagaut P, Pengloan G, Ristori A (2002) Phys Chem Chem Phys 4(10):1846–1854 Dagaut P, Pengloan G, Ristori A (2002) Phys Chem Chem Phys 4(10):1846–1854
go back to reference Davis SG, Law CK (1998) Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combust Sci Technol 140(1–6):427–449 Davis SG, Law CK (1998) Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combust Sci Technol 140(1–6):427–449
go back to reference Eichmeier JU, Reitz RD, Rutland C (2014) A zero-dimensional phenomenological model for RCCI combustion using reaction kinetics. SAE Int J Engine 7:106–119CrossRef Eichmeier JU, Reitz RD, Rutland C (2014) A zero-dimensional phenomenological model for RCCI combustion using reaction kinetics. SAE Int J Engine 7:106–119CrossRef
go back to reference Farrell JT, Cernansky NP, Dryer FL, Law CK, Friend DG, Hergart CA et al (2007) Development of an experimental database and kinetic models for surrogate diesel fuels. SAE 2007–01–0201 Farrell JT, Cernansky NP, Dryer FL, Law CK, Friend DG, Hergart CA et al (2007) Development of an experimental database and kinetic models for surrogate diesel fuels. SAE 2007–01–0201
go back to reference Fieweger K, Blumenthal R, Adomeit G (1997b) Combust Flame 109(4):599–619 Fieweger K, Blumenthal R, Adomeit G (1997b) Combust Flame 109(4):599–619
go back to reference Florea R, Zha K, Yu X, Jansons M, Taraza D, Henein N (2012) Ethanol/N-heptane dual fuel partially premixed combustion analysis through formaldehyde PLIF. SAE Int J Engine 5:483–492 Florea R, Zha K, Yu X, Jansons M, Taraza D, Henein N (2012) Ethanol/N-heptane dual fuel partially premixed combustion analysis through formaldehyde PLIF. SAE Int J Engine 5:483–492
go back to reference Fluent A (2011) 14.0: Theory Guide, Ansys, Inc., Canonsburg, PA Fluent A (2011) 14.0: Theory Guide, Ansys, Inc., Canonsburg, PA
go back to reference Gauthier B, Davidson D, Hanson R (2004) Combust Flame 139(4):300–311 Gauthier B, Davidson D, Hanson R (2004) Combust Flame 139(4):300–311
go back to reference Hanson RM, Kokjohn SL, Splitter DA, Reitz RD (2010) An experimental investigation of fuel reactivity controlled PCCI combustion in a heavy-duty engine. SAE Int J Engine 3:700–716CrossRef Hanson RM, Kokjohn SL, Splitter DA, Reitz RD (2010) An experimental investigation of fuel reactivity controlled PCCI combustion in a heavy-duty engine. SAE Int J Engine 3:700–716CrossRef
go back to reference Hasan MM, Rahman MM, Kadirgama K (2015) A review on homogeneous charge compression ignition engine performance using biodiesel-diesel blend as a fuel. Int J Autom Mech Eng 11:2199 Hasan MM, Rahman MM, Kadirgama K (2015) A review on homogeneous charge compression ignition engine performance using biodiesel-diesel blend as a fuel. Int J Autom Mech Eng 11:2199
go back to reference Hessel RP, Foster DE, Aceves SM, Davisson ML, Espinosa-Loza F, Flowers DL, Pitz WJ, Dec JE, Sjöberg M, Babajimopoulos A (2008) Modeling iso-octane HCCI using CFD with multi-zone detailed chemistry comparison to detailed speciation data over a range of lean equivalence ratios. SAE Paper 2008–01–0047 Hessel RP, Foster DE, Aceves SM, Davisson ML, Espinosa-Loza F, Flowers DL, Pitz WJ, Dec JE, Sjöberg M, Babajimopoulos A (2008) Modeling iso-octane HCCI using CFD with multi-zone detailed chemistry comparison to detailed speciation data over a range of lean equivalence ratios. SAE Paper 2008–01–0047
go back to reference Heywood JB (2018) Internal combustion engine fundamentals. McGraw-Hill Education Heywood JB (2018) Internal combustion engine fundamentals. McGraw-Hill Education
go back to reference Hu H, Keck J (1987) Autoignition of adiabatically compressed combustible gas mixtures. SAE transactions, 592–604 Hu H, Keck J (1987) Autoignition of adiabatically compressed combustible gas mixtures. SAE transactions, 592–604
go back to reference Huang Y, Sung C, Eng J (2004) Laminar flame speeds of primary reference fuels and reformer gas mixtures. Combust Flame 139(3):239–251 Huang Y, Sung C, Eng J (2004) Laminar flame speeds of primary reference fuels and reformer gas mixtures. Combust Flame 139(3):239–251
go back to reference Inagaki K, Fuyuto T, Nishikawa K, Nakakita K (2006) Dual-fuel PCI combustion controlled by in-cylinder stratification of ignitability. SAE Technical Paper No. 2006- 01–0028 Inagaki K, Fuyuto T, Nishikawa K, Nakakita K (2006) Dual-fuel PCI combustion controlled by in-cylinder stratification of ignitability. SAE Technical Paper No. 2006- 01–0028
go back to reference Javed T, Nasir EF, Ahmed A, Badra J, Djebbi K, Beshir M, Farooq A (2017) Ignition delay measurements of light naphtha: a fully blended low octane fuel. Proc Combust Inst 36(1):315–322CrossRef Javed T, Nasir EF, Ahmed A, Badra J, Djebbi K, Beshir M, Farooq A (2017) Ignition delay measurements of light naphtha: a fully blended low octane fuel. Proc Combust Inst 36(1):315–322CrossRef
go back to reference Jiang H-F, Wang J-X, Shuai S-J. Visualisation and performance analysis of gasoline homogeneous charge induced ignition by diesel. SAE Technical Paper No. 2005–01–0136 Jiang H-F, Wang J-X, Shuai S-J. Visualisation and performance analysis of gasoline homogeneous charge induced ignition by diesel. SAE Technical Paper No. 2005–01–0136
go back to reference Kabil I, Sim J, Badra JA, Eldrainy Y, Abdelghaffar W, Mubarak Ali MJ, Elwardany A (2018) A surrogate fuel formulation to characterise heating and evaporation of light naphtha droplets. Combust Sci Technol 190(7):218–1231 Kabil I, Sim J, Badra JA, Eldrainy Y, Abdelghaffar W, Mubarak Ali MJ, Elwardany A (2018) A surrogate fuel formulation to characterise heating and evaporation of light naphtha droplets. Combust Sci Technol 190(7):218–1231
go back to reference Kalghatgi GT, Head RA (2004) SAE Technical Paper 2004–01-1969. https://doi.org/10.427/2004-01-1969 Kalghatgi GT, Head RA (2004) SAE Technical Paper 2004–01-1969. https://​doi.​org/​10.​427/​2004-01-1969
go back to reference Kalghatgi GT, Risberg P, Ångström HE (2006) Advantages of fuels with high resistance to auto-ignition in late-injection, low-temperature, compression ignition combustion. SAE Transactions, 623–634 Kalghatgi GT, Risberg P, Ångström HE (2006) Advantages of fuels with high resistance to auto-ignition in late-injection, low-temperature, compression ignition combustion. SAE Transactions, 623–634
go back to reference Karim GA (1980) A review of combustion processes in the dual-fuel engine—the gas diesel engine. Prog Energy Combust 6:277–285 Karim GA (1980) A review of combustion processes in the dual-fuel engine—the gas diesel engine. Prog Energy Combust 6:277–285
go back to reference Kimura S, Aoki O, Ogawa H, Muranaka S, Enomoto Y (1999) New combustion concept for ultra-clean and high-efficiency small DI diesel engines. SAE Technical Paper No. 1999–01–3681 Kimura S, Aoki O, Ogawa H, Muranaka S, Enomoto Y (1999) New combustion concept for ultra-clean and high-efficiency small DI diesel engines. SAE Technical Paper No. 1999–01–3681
go back to reference Lemmon EW, Huber ML, McLinden MO (2010) NIST standard reference database 23. Reference fluid thermodynamic and transport properties (REFPROP), version, 9 Lemmon EW, Huber ML, McLinden MO (2010) NIST standard reference database 23. Reference fluid thermodynamic and transport properties (REFPROP), version, 9
go back to reference Li J, Yang W, An H, Chou S (2015a) Modeling on blend gasoline/diesel fuel combustion in a direct injection diesel engine. Appl Energy 160:777–783CrossRef Li J, Yang W, An H, Chou S (2015a) Modeling on blend gasoline/diesel fuel combustion in a direct injection diesel engine. Appl Energy 160:777–783CrossRef
go back to reference Li J, Yang WM, An H, Zhao D (2015b) Effects of fuel ratio and injection timing on gasoline/biodiesel fueled RCCI engine: a modelling study. Appl Energy 155:59–67CrossRef Li J, Yang WM, An H, Zhao D (2015b) Effects of fuel ratio and injection timing on gasoline/biodiesel fueled RCCI engine: a modelling study. Appl Energy 155:59–67CrossRef
go back to reference Li J, Yang W, Zhou D (2017) Review on the management of RCCI engines. Renew Sustain Energy Rev 69:65–79CrossRef Li J, Yang W, Zhou D (2017) Review on the management of RCCI engines. Renew Sustain Energy Rev 69:65–79CrossRef
go back to reference Lim JH, Reitz R (2013) Improving high-efficiency reactivity-controlled compression ignition combustion with diesel and gasoline direct injection. Proc Inst Mech Eng Pt D J Automobile Eng 227:17–30CrossRef Lim JH, Reitz R (2013) Improving high-efficiency reactivity-controlled compression ignition combustion with diesel and gasoline direct injection. Proc Inst Mech Eng Pt D J Automobile Eng 227:17–30CrossRef
go back to reference Liu YD, Jia M, Xie MZ, Pang B (2012) Enhancement on a skeletal kinetic model for primary reference fuel oxidation by using a semi-decoupling methodology. Energy Fuels 26(12):7069–7083CrossRef Liu YD, Jia M, Xie MZ, Pang B (2012) Enhancement on a skeletal kinetic model for primary reference fuel oxidation by using a semi-decoupling methodology. Energy Fuels 26(12):7069–7083CrossRef
go back to reference Liu Y, Jia M, Xie M, Pang B (2013a) Improvement on a skeletal chemical kinetic model of iso-octane for internal combustion engine by using a practical methodology. Fuel 103:884–891CrossRef Liu Y, Jia M, Xie M, Pang B (2013a) Improvement on a skeletal chemical kinetic model of iso-octane for internal combustion engine by using a practical methodology. Fuel 103:884–891CrossRef
go back to reference Liu YD, Jia M, Xie MZ, Pang B (2013b) Development of a new skeletal chemical kinetic model of toluene reference fuel with application to gasoline surrogate fuels for computational fluid dynamics engine simulation. Energy Fuels 27(8):4899–4909CrossRef Liu YD, Jia M, Xie MZ, Pang B (2013b) Development of a new skeletal chemical kinetic model of toluene reference fuel with application to gasoline surrogate fuels for computational fluid dynamics engine simulation. Energy Fuels 27(8):4899–4909CrossRef
go back to reference Machrafi H, Cavadias S, Amouroux J (2009a) The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates. Fuel Process Technol 90:247–263CrossRef Machrafi H, Cavadias S, Amouroux J (2009a) The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates. Fuel Process Technol 90:247–263CrossRef
go back to reference Machrafi H, Cavadias S, Amouroux J (2009b) The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates. Fuel Process Technol 90(2):247–263CrossRef Machrafi H, Cavadias S, Amouroux J (2009b) The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates. Fuel Process Technol 90(2):247–263CrossRef
go back to reference Manente V (2010) Gasoline partially premixed combustion-an advanced internal combustion engine concept aimed to high efficiency, low emissions, and low acoustic noise in the whole load range (Doctoral dissertation, Lund University) Manente V (2010) Gasoline partially premixed combustion-an advanced internal combustion engine concept aimed to high efficiency, low emissions, and low acoustic noise in the whole load range (Doctoral dissertation, Lund University)
go back to reference Maqua C, Castanet G, Lemoine F, Doué N, Lavergne G (2006) Temperature measurements of binary droplets using three-colour laser-induced fluorescence. Exp Fluids 40:786CrossRef Maqua C, Castanet G, Lemoine F, Doué N, Lavergne G (2006) Temperature measurements of binary droplets using three-colour laser-induced fluorescence. Exp Fluids 40:786CrossRef
go back to reference Martínez PE (1984) Termodinámica básica y aplicada Martínez PE (1984) Termodinámica básica y aplicada
go back to reference Mehl M, Chen J, Pitz W, Sarathy S, Westbrook C (2011a) Energy Fuels 25(11):5215–5223CrossRef Mehl M, Chen J, Pitz W, Sarathy S, Westbrook C (2011a) Energy Fuels 25(11):5215–5223CrossRef
go back to reference Mehl M, Pitz WJ, Westbrook CK, Curran HJ (2011b) Proc Combust Inst 33:193–200CrossRef Mehl M, Pitz WJ, Westbrook CK, Curran HJ (2011b) Proc Combust Inst 33:193–200CrossRef
go back to reference Merchant SS, Goldsmith CF, Vandeputte AG, Burke MP, Klippenstein SJ, Green WH (2015) Combust Flame 162:3658–3673CrossRef Merchant SS, Goldsmith CF, Vandeputte AG, Burke MP, Klippenstein SJ, Green WH (2015) Combust Flame 162:3658–3673CrossRef
go back to reference Mittal G, Sung CJ (2007) Combust Flame 150(4):355–368 Mittal G, Sung CJ (2007) Combust Flame 150(4):355–368
go back to reference Montgomery CJ, Cremer MA, Chen JY, Westbrook CK, Maurice LQ (2002) J Propul Power 18(1):192–198CrossRef Montgomery CJ, Cremer MA, Chen JY, Westbrook CK, Maurice LQ (2002) J Propul Power 18(1):192–198CrossRef
go back to reference Moreac G, Dagaut P, Roesler J, Cathonnet M (2006) Combust Flame 145(3):512–520 Moreac G, Dagaut P, Roesler J, Cathonnet M (2006) Combust Flame 145(3):512–520
go back to reference Naik CV, Pitz WJ, Westbrook CK, Sjöberg M, Dec JE, Orme J et al (2005) Detailed chemical kinetic modelling of surrogate fuels for gasoline and application to an HCCI engine. SAE technical papers Naik CV, Pitz WJ, Westbrook CK, Sjöberg M, Dec JE, Orme J et al (2005) Detailed chemical kinetic modelling of surrogate fuels for gasoline and application to an HCCI engine. SAE technical papers
go back to reference Noehre C, Andersson M, Johansson B, Hultqvist A (2006) Characterisation of partially premixed combustion. SAE Technical Paper No. 2006–01–3412 Noehre C, Andersson M, Johansson B, Hultqvist A (2006) Characterisation of partially premixed combustion. SAE Technical Paper No. 2006–01–3412
go back to reference Patel A, Kong SC, Reitz RD (2004) Development, and validation of a reduced reaction mechanism for HCCI engine simulations. SAE Paper 2004–01–0558 Patel A, Kong SC, Reitz RD (2004) Development, and validation of a reduced reaction mechanism for HCCI engine simulations. SAE Paper 2004–01–0558
go back to reference Patil D Analysis of injection parameters influencing gasoline direct injection compression ignition (GDICI) engine operation in LTC using Naphtha Patil D Analysis of injection parameters influencing gasoline direct injection compression ignition (GDICI) engine operation in LTC using Naphtha
go back to reference Persson H et al Cylinder-to-cylinder and cycle-to-cycle variations at HCCI operation with trapped residuals. SAE Technical Paper No. 2005–01–0130 Persson H et al Cylinder-to-cylinder and cycle-to-cycle variations at HCCI operation with trapped residuals. SAE Technical Paper No. 2005–01–0130
go back to reference Persson H et al The effect of intake temperature on HCCI operation using negative valve overlap. SAE Technical Paper No. 2004–01–0944 Persson H et al The effect of intake temperature on HCCI operation using negative valve overlap. SAE Technical Paper No. 2004–01–0944
go back to reference Ra Y, Reitz RD (2008) A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels. Combust Flame 155(4):713–738CrossRef Ra Y, Reitz RD (2008) A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels. Combust Flame 155(4):713–738CrossRef
go back to reference Raj A (2010) Formation, growth, and oxidation of soot—a numerical study. PhD thesis, University of Cambridge Raj A (2010) Formation, growth, and oxidation of soot—a numerical study. PhD thesis, University of Cambridge
go back to reference Reitz RD, Duraisamy G (2015) Review of high efficiency and clean reactivity-controlled compression ignition (RCCI) combustion in internal combustion engines. Prog Energy Combust 46:12–71CrossRef Reitz RD, Duraisamy G (2015) Review of high efficiency and clean reactivity-controlled compression ignition (RCCI) combustion in internal combustion engines. Prog Energy Combust 46:12–71CrossRef
go back to reference Richards K, Senecal P, Pomraning E (2013) CONVERGE 2.1. 0 Theory Manual, Convergent Science, Inc, Middleton, WI Richards K, Senecal P, Pomraning E (2013) CONVERGE 2.1. 0 Theory Manual, Convergent Science, Inc, Middleton, WI
go back to reference Sarathy SM, Kukkadapu G, Mehl M, Javed T, Ahmed A, Naser N, Tekawade A, Kosiba G, Alabbad M, Singh E, Park S, Rashidi MA, Chung SH, Roberts WL, Oehlschlaeger MA, Sung C-J, Farooq A (2016) Compositional effects on the ignition of FACE gasolines. Combust Flame 169:171–193CrossRef Sarathy SM, Kukkadapu G, Mehl M, Javed T, Ahmed A, Naser N, Tekawade A, Kosiba G, Alabbad M, Singh E, Park S, Rashidi MA, Chung SH, Roberts WL, Oehlschlaeger MA, Sung C-J, Farooq A (2016) Compositional effects on the ignition of FACE gasolines. Combust Flame 169:171–193CrossRef
go back to reference Sazhin S, Elwardany A, Krutitskii P, Castanet G, Lemoine F, Sazhina E, Heikal M (2010) A simplified model for bi-component droplet heating and evaporation. Int J Heat Mass Transf 53:4495–4505 Sazhin S, Elwardany A, Krutitskii P, Castanet G, Lemoine F, Sazhina E, Heikal M (2010) A simplified model for bi-component droplet heating and evaporation. Int J Heat Mass Transf 53:4495–4505
go back to reference Shahir S, Masjuki H, Kalam M, Imran A, Fattah I, Sanjid A (2014) Feasibility of diesel–biodiesel–ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety, and combustion. Renew Sustain Energy Rev 32:379–395CrossRef Shahir S, Masjuki H, Kalam M, Imran A, Fattah I, Sanjid A (2014) Feasibility of diesel–biodiesel–ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety, and combustion. Renew Sustain Energy Rev 32:379–395CrossRef
go back to reference Shang Q, Jiang W, Lu H, Liang B (2010) Properties of Tung oil biodiesel and its blends with diesel. Biores Technol 101:826–828CrossRef Shang Q, Jiang W, Lu H, Liang B (2010) Properties of Tung oil biodiesel and its blends with diesel. Biores Technol 101:826–828CrossRef
go back to reference Shen HPS, Vanderover J, Oehlschlaeger MA (2009) Proc Combust Inst 32(1):165–172CrossRef Shen HPS, Vanderover J, Oehlschlaeger MA (2009) Proc Combust Inst 32(1):165–172CrossRef
go back to reference Singh E, Badra J, Mehl M, Sarathy SM (2017) Chemical kinetic insights into the octane number and octane sensitivity of gasoline surrogate mixtures. Energy Fuels d31(2017):1945–1960 Singh E, Badra J, Mehl M, Sarathy SM (2017) Chemical kinetic insights into the octane number and octane sensitivity of gasoline surrogate mixtures. Energy Fuels d31(2017):1945–1960
go back to reference Singh H, Sonawane U, Jena A, Agarwal AK (2021) Potential of gasoline compression ignition combustion for heavy-duty applications in internal combustion engines. In: Singh AP, Kumar D, Agarwal AK (eds) Alternative fuels and advanced combustion techniques as sustainable solutions for internal combustion engines. Energy, environment, and sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-1513-9_13 Singh H, Sonawane U, Jena A, Agarwal AK (2021) Potential of gasoline compression ignition combustion for heavy-duty applications in internal combustion engines. In: Singh AP, Kumar D, Agarwal AK (eds) Alternative fuels and advanced combustion techniques as sustainable solutions for internal combustion engines. Energy, environment, and sustainability. Springer, Singapore. https://​doi.​org/​10.​1007/​978-981-16-1513-9_​13
go back to reference Sitty G, Taft N (2016) What will the global light-duty vehicle fleet look like through 2050? Fuel Freedom Foundation Sitty G, Taft N (2016) What will the global light-duty vehicle fleet look like through 2050? Fuel Freedom Foundation
go back to reference Soyhan HS, Løvås T, Mauss F (2001) A stochastic simulation of an HCCI engine using an automatically reduced mechanism, ASME 2001-ICE-416 Soyhan HS, Løvås T, Mauss F (2001) A stochastic simulation of an HCCI engine using an automatically reduced mechanism, ASME 2001-ICE-416
go back to reference Speight JG (2019) Handbook of industrial hydrocarbon processes. Gulf Professional Publishing Speight JG (2019) Handbook of industrial hydrocarbon processes. Gulf Professional Publishing
go back to reference Speight JG, El-Gendy NS (2017) Introduction to petroleum biotechnology. Gulf Professional Publishing Speight JG, El-Gendy NS (2017) Introduction to petroleum biotechnology. Gulf Professional Publishing
go back to reference Speight JG, El-Gendy NS (2018) Refinery products and by-products. Introduction to petroleum biotechnology, 1st ed. In: Speight JG, El-Gendy NS (ed) (pp 41–68) Speight JG, El-Gendy NS (2018) Refinery products and by-products. Introduction to petroleum biotechnology, 1st ed. In: Speight JG, El-Gendy NS (ed) (pp 41–68)
go back to reference Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sustain Energy Rev 4:111–133 Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sustain Energy Rev 4:111–133
go back to reference Tanaka S, Ayala F, Keck JC (2003) Combust Flame 133:467–481 Tanaka S, Ayala F, Keck JC (2003) Combust Flame 133:467–481
go back to reference Tat ME, Van Gerpen JH (1999) The kinematic viscosity of biodiesel and its blends with diesel fuel. J Am Oil Chemist Soc 76:1511–1513 Tat ME, Van Gerpen JH (1999) The kinematic viscosity of biodiesel and its blends with diesel fuel. J Am Oil Chemist Soc 76:1511–1513
go back to reference Tomlin AS, Turanyi T, Pilling MJ (1997) Comprehensive chemical kinetics. Elsevier, Amsterdam, p 293 Tomlin AS, Turanyi T, Pilling MJ (1997) Comprehensive chemical kinetics. Elsevier, Amsterdam, p 293
go back to reference Wang H, Yao M, Reitz RD (2013) Development of a reduced primary reference fuel mechanism for internal combustion engine combustion simulations. Energy Fuel 27(12):7843–7853 Wang H, Yao M, Reitz RD (2013) Development of a reduced primary reference fuel mechanism for internal combustion engine combustion simulations. Energy Fuel 27(12):7843–7853
go back to reference Wang H, Yao M, Yue Z, Jia M, Reitz RD (2015) A reduced toluene reference fuel chemical kinetic mechanism for combustion and polycyclic-aromatic hydrocarbon predictions. Combust Flame 162(6):2390–2404CrossRef Wang H, Yao M, Yue Z, Jia M, Reitz RD (2015) A reduced toluene reference fuel chemical kinetic mechanism for combustion and polycyclic-aromatic hydrocarbon predictions. Combust Flame 162(6):2390–2404CrossRef
go back to reference Wang Z, Li F, Wang Y (2017) A generalised kinetic model with variable octane number for engine knock prediction. Fuel 188:489–499CrossRef Wang Z, Li F, Wang Y (2017) A generalised kinetic model with variable octane number for engine knock prediction. Fuel 188:489–499CrossRef
go back to reference Westbrook CK, Pitz WJ, Mehl M, Curran HJ (2011) Detailed chemical kinetic reaction mechanisms for primary reference fuels for diesel cetane number and spark ignition octane number. Proc Combust Inst 33:185–192CrossRef Westbrook CK, Pitz WJ, Mehl M, Curran HJ (2011) Detailed chemical kinetic reaction mechanisms for primary reference fuels for diesel cetane number and spark ignition octane number. Proc Combust Inst 33:185–192CrossRef
go back to reference Zádor J, Taatjes CA, Fernandes RX (2011) Prog Energy Combust Sci 37:371–421CrossRef Zádor J, Taatjes CA, Fernandes RX (2011) Prog Energy Combust Sci 37:371–421CrossRef
go back to reference Zhong B-J, Zheng D (2014) A chemical mechanism for ignition and oxidation of multi-component gasoline surrogate fuels. Fuel 128:458–466CrossRef Zhong B-J, Zheng D (2014) A chemical mechanism for ignition and oxidation of multi-component gasoline surrogate fuels. Fuel 128:458–466CrossRef
go back to reference Zhou D, Yang W, An H, Li J, Kraft M (2016) An enhanced primary reference fuel mechanism considering conventional fuel chemistry in engine simulation. J Eng Gas Turb Power 138(9) Zhou D, Yang W, An H, Li J, Kraft M (2016) An enhanced primary reference fuel mechanism considering conventional fuel chemistry in engine simulation. J Eng Gas Turb Power 138(9)
Metadata
Title
Reaction Mechanisms and Fuel Surrogates for Naphtha/Low Octane Fractions-Application for Gasoline Compression Ignition Engine
Authors
Harsimran Singh
Avinash Kumar Agarwal
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-8735-8_11

Premium Partner