Skip to main content

2022 | OriginalPaper | Buchkapitel

11. Reaction Mechanisms and Fuel Surrogates for Naphtha/Low Octane Fractions-Application for Gasoline Compression Ignition Engine

verfasst von : Harsimran Singh, Avinash Kumar Agarwal

Erschienen in: Gasoline Compression Ignition Technology

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Internal combustion engines are a prime mover in almost 99.8% of global transport vehicles, whereas 95% of the total driving energy still comes from petroleum-derived liquid fuels. Meeting emissions legislations is still a matter of concern for various automotive industries, which motivated them to devise cleaner and more efficient combustion concepts. Gasoline Compression Ignition (GCI) is one of those advanced low-temperature combustions (LTC) ideas that utilise relatively less processed petroleum fractions called Naphtha/Low octane fractions (LOF’s), offering indicated efficiency in the order of 50% or above and limits NOx and soot emissions simultaneously. Because of the unavailability of naphtha for research purposes, researchers have formulated different naphtha fuel surrogates (for experiments) and chemical reaction mechanisms (for numerical studies). This chapter starts with an overview of various LTC combustion strategies and a brief discussion about GCI combustion technology. Naphtha properties and generalised reaction pathways for gasoline have been discussed afterwards. After that, detailed literature focused on available reaction mechanisms and surrogates for low octane fractions. Overall, this chapter aims to cover most of the literature published on detailed and reduced chemical kinetic mechanisms and fuel surrogates that can efficiently mimic low octane fractions’ chemical, physical, and combustion characteristics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agarwal AK, Singh AP, Maurya RK (2017) Evolution, challenges, and path forward for low-temperature combustion engines. Prog Energy Combust Sci 61:1–56CrossRef Agarwal AK, Singh AP, Maurya RK (2017) Evolution, challenges, and path forward for low-temperature combustion engines. Prog Energy Combust Sci 61:1–56CrossRef
Zurück zum Zitat Ahmed SS, Mauß F, Moréac G, Zeuch T (2007) Phys Chem Chem Phys 9:1107–1126CrossRef Ahmed SS, Mauß F, Moréac G, Zeuch T (2007) Phys Chem Chem Phys 9:1107–1126CrossRef
Zurück zum Zitat Ahmed A, Khurshid M, Naser N, Badra J, Gaillard P, Chung SH, Sarathy M (2015) Surrogate fuel formulation for light naphtha combustion in advanced combustion engines Ahmed A, Khurshid M, Naser N, Badra J, Gaillard P, Chung SH, Sarathy M (2015) Surrogate fuel formulation for light naphtha combustion in advanced combustion engines
Zurück zum Zitat Akihama K, Kosaka H, Hotta Y, Nishikawa K, Inagaki K, Fuyuto T, Weissman W (2009) An investigation of high load (compression ignition) operation of the “naphtha engine”– a combustion strategy for low well-to-wheel CO2 emissions. SAE Int J Fuels Lubr 1(1):920–932 Akihama K, Kosaka H, Hotta Y, Nishikawa K, Inagaki K, Fuyuto T, Weissman W (2009) An investigation of high load (compression ignition) operation of the “naphtha engine”– a combustion strategy for low well-to-wheel CO2 emissions. SAE Int J Fuels Lubr 1(1):920–932
Zurück zum Zitat Al Rashidi MJ, Mehl M, Pitz WJ, Mohamed S, Sarathy SM (2017) Cyclopentane combustion chemistry. Part I: mechanism development and computational kinetics. Combust Flame 183:358–371 Al Rashidi MJ, Mehl M, Pitz WJ, Mohamed S, Sarathy SM (2017) Cyclopentane combustion chemistry. Part I: mechanism development and computational kinetics. Combust Flame 183:358–371
Zurück zum Zitat Al Rashidi MJ, Mármol JC, Banyon C, Sajid MB, Mehl M, Pitz WJ, Mohamed S, Alfazazi A, Lu T, Curran HJ (2017) Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation. Combust Flame 183:372–385 Al Rashidi MJ, Mármol JC, Banyon C, Sajid MB, Mehl M, Pitz WJ, Mohamed S, Alfazazi A, Lu T, Curran HJ (2017) Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation. Combust Flame 183:372–385
Zurück zum Zitat Alabbad M, Issayev G, Badra J, Voice AK, Giri BR, Djebbi K, Farooq A (2018) Autoignition of straight-run naphtha: a promising fuel for advanced compression ignition engines. Combust Flame 189:337–346CrossRef Alabbad M, Issayev G, Badra J, Voice AK, Giri BR, Djebbi K, Farooq A (2018) Autoignition of straight-run naphtha: a promising fuel for advanced compression ignition engines. Combust Flame 189:337–346CrossRef
Zurück zum Zitat Andrae JCG (2008) Development of a detailed kinetic model for gasoline surrogate fuels. Fuel 87:2013–2022CrossRef Andrae JCG (2008) Development of a detailed kinetic model for gasoline surrogate fuels. Fuel 87:2013–2022CrossRef
Zurück zum Zitat Andrae JCG, Brinck T, Kalghatgi GT (2008) HCCI experiments with toluene reference fuels modelled by a semi-detailed chemical kinetic model. Combust Flame 155:696–712CrossRef Andrae JCG, Brinck T, Kalghatgi GT (2008) HCCI experiments with toluene reference fuels modelled by a semi-detailed chemical kinetic model. Combust Flame 155:696–712CrossRef
Zurück zum Zitat Aroonsrisopon T, Sohm V, Werner P, Foster DE, Morikawa T, Iida M (2002) An investigation into the effect of fuel composition on HCCI combustion characteristics. SAE Paper 2002–01–2830 Aroonsrisopon T, Sohm V, Werner P, Foster DE, Morikawa T, Iida M (2002) An investigation into the effect of fuel composition on HCCI combustion characteristics. SAE Paper 2002–01–2830
Zurück zum Zitat Benajes J, Molina S, García A, Monsalve-Serrano J (2015) Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity-controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy 90:1261–1271CrossRef Benajes J, Molina S, García A, Monsalve-Serrano J (2015) Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity-controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy 90:1261–1271CrossRef
Zurück zum Zitat Benjumea P, Agudelo J, Agudelo A (2008) Basic properties of palm oil biodiesel–diesel blends. Fuel 87:2069–2075CrossRef Benjumea P, Agudelo J, Agudelo A (2008) Basic properties of palm oil biodiesel–diesel blends. Fuel 87:2069–2075CrossRef
Zurück zum Zitat Bessonette P, Schleyer C, Duffy K, Hardy W, Liechty M (2007) Effects of fuel property changes on heavy-duty HCCI combustion. Polymer 2013:04–08 Bessonette P, Schleyer C, Duffy K, Hardy W, Liechty M (2007) Effects of fuel property changes on heavy-duty HCCI combustion. Polymer 2013:04–08
Zurück zum Zitat Bhattacharjee B, Schwer DA, Barton PI, Green WH (2003) Combust Flame 135:191–208CrossRef Bhattacharjee B, Schwer DA, Barton PI, Green WH (2003) Combust Flame 135:191–208CrossRef
Zurück zum Zitat Bounaceur R, Da Costa I, Fournet R, Billaud F, Battin- Leclerc F (2004) Int J Chem Kinet 37(1):25–49CrossRef Bounaceur R, Da Costa I, Fournet R, Billaud F, Battin- Leclerc F (2004) Int J Chem Kinet 37(1):25–49CrossRef
Zurück zum Zitat Brakora JL, Ra Y, Reitz RD, Mcfarlane J, Daw CS (2008) Development, and validation of a reduced reaction mechanism for biodiesel fueled engine simulations. SAE Paper 2008–01–1378 Brakora JL, Ra Y, Reitz RD, Mcfarlane J, Daw CS (2008) Development, and validation of a reduced reaction mechanism for biodiesel fueled engine simulations. SAE Paper 2008–01–1378
Zurück zum Zitat Castanet G, Lavieille P, Lebouché M, Lemoine F (2003) Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-colour laser-induced fluorescence. Exp Fluids 35:563–571CrossRef Castanet G, Lavieille P, Lebouché M, Lemoine F (2003) Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-colour laser-induced fluorescence. Exp Fluids 35:563–571CrossRef
Zurück zum Zitat Chaos M, Zhao Z, Kazakov A, Gokulakrishnan P, Angioletti M, Dryer F (2007) Proceedings of the 5th US. Combustion Meeting; San Diego, CA, March 25−28 2007 Chaos M, Zhao Z, Kazakov A, Gokulakrishnan P, Angioletti M, Dryer F (2007) Proceedings of the 5th US. Combustion Meeting; San Diego, CA, March 25−28 2007
Zurück zum Zitat Chen LY, Chen YH, Hung YS, Chiang TH, Tsai CH (2013) Fuel properties and combustion characteristics of jatropha oil biodiesel–diesel blends. J Taiwan Inst Chem Eng 44:214–220CrossRef Chen LY, Chen YH, Hung YS, Chiang TH, Tsai CH (2013) Fuel properties and combustion characteristics of jatropha oil biodiesel–diesel blends. J Taiwan Inst Chem Eng 44:214–220CrossRef
Zurück zum Zitat Ciezki HK, Adomeit G (1993) Combust Flame 93:412–433 Ciezki HK, Adomeit G (1993) Combust Flame 93:412–433
Zurück zum Zitat Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (1998) A comprehensive modelling study of n-heptane oxidation. Combust Flame 114(1–2):149–177CrossRef Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (1998) A comprehensive modelling study of n-heptane oxidation. Combust Flame 114(1–2):149–177CrossRef
Zurück zum Zitat Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (2002) A comprehensive modelling study of iso-octane oxidation. Combust Flame 129(3):253–280CrossRef Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (2002) A comprehensive modelling study of iso-octane oxidation. Combust Flame 129(3):253–280CrossRef
Zurück zum Zitat Dagaut P, Pengloan G, Ristori A (2002) Phys Chem Chem Phys 4(10):1846–1854 Dagaut P, Pengloan G, Ristori A (2002) Phys Chem Chem Phys 4(10):1846–1854
Zurück zum Zitat Davis SG, Law CK (1998) Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combust Sci Technol 140(1–6):427–449 Davis SG, Law CK (1998) Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combust Sci Technol 140(1–6):427–449
Zurück zum Zitat Eichmeier JU, Reitz RD, Rutland C (2014) A zero-dimensional phenomenological model for RCCI combustion using reaction kinetics. SAE Int J Engine 7:106–119CrossRef Eichmeier JU, Reitz RD, Rutland C (2014) A zero-dimensional phenomenological model for RCCI combustion using reaction kinetics. SAE Int J Engine 7:106–119CrossRef
Zurück zum Zitat Farrell JT, Cernansky NP, Dryer FL, Law CK, Friend DG, Hergart CA et al (2007) Development of an experimental database and kinetic models for surrogate diesel fuels. SAE 2007–01–0201 Farrell JT, Cernansky NP, Dryer FL, Law CK, Friend DG, Hergart CA et al (2007) Development of an experimental database and kinetic models for surrogate diesel fuels. SAE 2007–01–0201
Zurück zum Zitat Fieweger K, Blumenthal R, Adomeit G (1997a) Combust Flame 109:599–619CrossRef Fieweger K, Blumenthal R, Adomeit G (1997a) Combust Flame 109:599–619CrossRef
Zurück zum Zitat Fieweger K, Blumenthal R, Adomeit G (1997b) Combust Flame 109(4):599–619 Fieweger K, Blumenthal R, Adomeit G (1997b) Combust Flame 109(4):599–619
Zurück zum Zitat Florea R, Zha K, Yu X, Jansons M, Taraza D, Henein N (2012) Ethanol/N-heptane dual fuel partially premixed combustion analysis through formaldehyde PLIF. SAE Int J Engine 5:483–492 Florea R, Zha K, Yu X, Jansons M, Taraza D, Henein N (2012) Ethanol/N-heptane dual fuel partially premixed combustion analysis through formaldehyde PLIF. SAE Int J Engine 5:483–492
Zurück zum Zitat Fluent A (2011) 14.0: Theory Guide, Ansys, Inc., Canonsburg, PA Fluent A (2011) 14.0: Theory Guide, Ansys, Inc., Canonsburg, PA
Zurück zum Zitat Gauthier B, Davidson D, Hanson R (2004) Combust Flame 139(4):300–311 Gauthier B, Davidson D, Hanson R (2004) Combust Flame 139(4):300–311
Zurück zum Zitat Hanson RM, Kokjohn SL, Splitter DA, Reitz RD (2010) An experimental investigation of fuel reactivity controlled PCCI combustion in a heavy-duty engine. SAE Int J Engine 3:700–716CrossRef Hanson RM, Kokjohn SL, Splitter DA, Reitz RD (2010) An experimental investigation of fuel reactivity controlled PCCI combustion in a heavy-duty engine. SAE Int J Engine 3:700–716CrossRef
Zurück zum Zitat Hasan MM, Rahman MM, Kadirgama K (2015) A review on homogeneous charge compression ignition engine performance using biodiesel-diesel blend as a fuel. Int J Autom Mech Eng 11:2199 Hasan MM, Rahman MM, Kadirgama K (2015) A review on homogeneous charge compression ignition engine performance using biodiesel-diesel blend as a fuel. Int J Autom Mech Eng 11:2199
Zurück zum Zitat Hessel RP, Foster DE, Aceves SM, Davisson ML, Espinosa-Loza F, Flowers DL, Pitz WJ, Dec JE, Sjöberg M, Babajimopoulos A (2008) Modeling iso-octane HCCI using CFD with multi-zone detailed chemistry comparison to detailed speciation data over a range of lean equivalence ratios. SAE Paper 2008–01–0047 Hessel RP, Foster DE, Aceves SM, Davisson ML, Espinosa-Loza F, Flowers DL, Pitz WJ, Dec JE, Sjöberg M, Babajimopoulos A (2008) Modeling iso-octane HCCI using CFD with multi-zone detailed chemistry comparison to detailed speciation data over a range of lean equivalence ratios. SAE Paper 2008–01–0047
Zurück zum Zitat Heywood JB (2018) Internal combustion engine fundamentals. McGraw-Hill Education Heywood JB (2018) Internal combustion engine fundamentals. McGraw-Hill Education
Zurück zum Zitat Hu H, Keck J (1987) Autoignition of adiabatically compressed combustible gas mixtures. SAE transactions, 592–604 Hu H, Keck J (1987) Autoignition of adiabatically compressed combustible gas mixtures. SAE transactions, 592–604
Zurück zum Zitat Huang Y, Sung C, Eng J (2004) Laminar flame speeds of primary reference fuels and reformer gas mixtures. Combust Flame 139(3):239–251 Huang Y, Sung C, Eng J (2004) Laminar flame speeds of primary reference fuels and reformer gas mixtures. Combust Flame 139(3):239–251
Zurück zum Zitat Inagaki K, Fuyuto T, Nishikawa K, Nakakita K (2006) Dual-fuel PCI combustion controlled by in-cylinder stratification of ignitability. SAE Technical Paper No. 2006- 01–0028 Inagaki K, Fuyuto T, Nishikawa K, Nakakita K (2006) Dual-fuel PCI combustion controlled by in-cylinder stratification of ignitability. SAE Technical Paper No. 2006- 01–0028
Zurück zum Zitat Javed T, Nasir EF, Ahmed A, Badra J, Djebbi K, Beshir M, Farooq A (2017) Ignition delay measurements of light naphtha: a fully blended low octane fuel. Proc Combust Inst 36(1):315–322CrossRef Javed T, Nasir EF, Ahmed A, Badra J, Djebbi K, Beshir M, Farooq A (2017) Ignition delay measurements of light naphtha: a fully blended low octane fuel. Proc Combust Inst 36(1):315–322CrossRef
Zurück zum Zitat Jiang H-F, Wang J-X, Shuai S-J. Visualisation and performance analysis of gasoline homogeneous charge induced ignition by diesel. SAE Technical Paper No. 2005–01–0136 Jiang H-F, Wang J-X, Shuai S-J. Visualisation and performance analysis of gasoline homogeneous charge induced ignition by diesel. SAE Technical Paper No. 2005–01–0136
Zurück zum Zitat Kabil I, Sim J, Badra JA, Eldrainy Y, Abdelghaffar W, Mubarak Ali MJ, Elwardany A (2018) A surrogate fuel formulation to characterise heating and evaporation of light naphtha droplets. Combust Sci Technol 190(7):218–1231 Kabil I, Sim J, Badra JA, Eldrainy Y, Abdelghaffar W, Mubarak Ali MJ, Elwardany A (2018) A surrogate fuel formulation to characterise heating and evaporation of light naphtha droplets. Combust Sci Technol 190(7):218–1231
Zurück zum Zitat Kalghatgi GT, Head RA (2004) SAE Technical Paper 2004–01-1969. https://doi.org/10.427/2004-01-1969 Kalghatgi GT, Head RA (2004) SAE Technical Paper 2004–01-1969. https://​doi.​org/​10.​427/​2004-01-1969
Zurück zum Zitat Kalghatgi GT, Risberg P, Ångström HE (2006) Advantages of fuels with high resistance to auto-ignition in late-injection, low-temperature, compression ignition combustion. SAE Transactions, 623–634 Kalghatgi GT, Risberg P, Ångström HE (2006) Advantages of fuels with high resistance to auto-ignition in late-injection, low-temperature, compression ignition combustion. SAE Transactions, 623–634
Zurück zum Zitat Karim GA (1980) A review of combustion processes in the dual-fuel engine—the gas diesel engine. Prog Energy Combust 6:277–285 Karim GA (1980) A review of combustion processes in the dual-fuel engine—the gas diesel engine. Prog Energy Combust 6:277–285
Zurück zum Zitat Kimura S, Aoki O, Ogawa H, Muranaka S, Enomoto Y (1999) New combustion concept for ultra-clean and high-efficiency small DI diesel engines. SAE Technical Paper No. 1999–01–3681 Kimura S, Aoki O, Ogawa H, Muranaka S, Enomoto Y (1999) New combustion concept for ultra-clean and high-efficiency small DI diesel engines. SAE Technical Paper No. 1999–01–3681
Zurück zum Zitat Lemmon EW, Huber ML, McLinden MO (2010) NIST standard reference database 23. Reference fluid thermodynamic and transport properties (REFPROP), version, 9 Lemmon EW, Huber ML, McLinden MO (2010) NIST standard reference database 23. Reference fluid thermodynamic and transport properties (REFPROP), version, 9
Zurück zum Zitat Li J, Yang W, An H, Chou S (2015a) Modeling on blend gasoline/diesel fuel combustion in a direct injection diesel engine. Appl Energy 160:777–783CrossRef Li J, Yang W, An H, Chou S (2015a) Modeling on blend gasoline/diesel fuel combustion in a direct injection diesel engine. Appl Energy 160:777–783CrossRef
Zurück zum Zitat Li J, Yang WM, An H, Zhao D (2015b) Effects of fuel ratio and injection timing on gasoline/biodiesel fueled RCCI engine: a modelling study. Appl Energy 155:59–67CrossRef Li J, Yang WM, An H, Zhao D (2015b) Effects of fuel ratio and injection timing on gasoline/biodiesel fueled RCCI engine: a modelling study. Appl Energy 155:59–67CrossRef
Zurück zum Zitat Li J, Yang W, Zhou D (2017) Review on the management of RCCI engines. Renew Sustain Energy Rev 69:65–79CrossRef Li J, Yang W, Zhou D (2017) Review on the management of RCCI engines. Renew Sustain Energy Rev 69:65–79CrossRef
Zurück zum Zitat Lim JH, Reitz R (2013) Improving high-efficiency reactivity-controlled compression ignition combustion with diesel and gasoline direct injection. Proc Inst Mech Eng Pt D J Automobile Eng 227:17–30CrossRef Lim JH, Reitz R (2013) Improving high-efficiency reactivity-controlled compression ignition combustion with diesel and gasoline direct injection. Proc Inst Mech Eng Pt D J Automobile Eng 227:17–30CrossRef
Zurück zum Zitat Liu YD, Jia M, Xie MZ, Pang B (2012) Enhancement on a skeletal kinetic model for primary reference fuel oxidation by using a semi-decoupling methodology. Energy Fuels 26(12):7069–7083CrossRef Liu YD, Jia M, Xie MZ, Pang B (2012) Enhancement on a skeletal kinetic model for primary reference fuel oxidation by using a semi-decoupling methodology. Energy Fuels 26(12):7069–7083CrossRef
Zurück zum Zitat Liu Y, Jia M, Xie M, Pang B (2013a) Improvement on a skeletal chemical kinetic model of iso-octane for internal combustion engine by using a practical methodology. Fuel 103:884–891CrossRef Liu Y, Jia M, Xie M, Pang B (2013a) Improvement on a skeletal chemical kinetic model of iso-octane for internal combustion engine by using a practical methodology. Fuel 103:884–891CrossRef
Zurück zum Zitat Liu YD, Jia M, Xie MZ, Pang B (2013b) Development of a new skeletal chemical kinetic model of toluene reference fuel with application to gasoline surrogate fuels for computational fluid dynamics engine simulation. Energy Fuels 27(8):4899–4909CrossRef Liu YD, Jia M, Xie MZ, Pang B (2013b) Development of a new skeletal chemical kinetic model of toluene reference fuel with application to gasoline surrogate fuels for computational fluid dynamics engine simulation. Energy Fuels 27(8):4899–4909CrossRef
Zurück zum Zitat Machrafi H, Cavadias S, Amouroux J (2009a) The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates. Fuel Process Technol 90:247–263CrossRef Machrafi H, Cavadias S, Amouroux J (2009a) The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates. Fuel Process Technol 90:247–263CrossRef
Zurück zum Zitat Machrafi H, Cavadias S, Amouroux J (2009b) The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates. Fuel Process Technol 90(2):247–263CrossRef Machrafi H, Cavadias S, Amouroux J (2009b) The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates. Fuel Process Technol 90(2):247–263CrossRef
Zurück zum Zitat Manente V (2010) Gasoline partially premixed combustion-an advanced internal combustion engine concept aimed to high efficiency, low emissions, and low acoustic noise in the whole load range (Doctoral dissertation, Lund University) Manente V (2010) Gasoline partially premixed combustion-an advanced internal combustion engine concept aimed to high efficiency, low emissions, and low acoustic noise in the whole load range (Doctoral dissertation, Lund University)
Zurück zum Zitat Maqua C, Castanet G, Lemoine F, Doué N, Lavergne G (2006) Temperature measurements of binary droplets using three-colour laser-induced fluorescence. Exp Fluids 40:786CrossRef Maqua C, Castanet G, Lemoine F, Doué N, Lavergne G (2006) Temperature measurements of binary droplets using three-colour laser-induced fluorescence. Exp Fluids 40:786CrossRef
Zurück zum Zitat Martínez PE (1984) Termodinámica básica y aplicada Martínez PE (1984) Termodinámica básica y aplicada
Zurück zum Zitat Mehl M, Chen J, Pitz W, Sarathy S, Westbrook C (2011a) Energy Fuels 25(11):5215–5223CrossRef Mehl M, Chen J, Pitz W, Sarathy S, Westbrook C (2011a) Energy Fuels 25(11):5215–5223CrossRef
Zurück zum Zitat Mehl M, Pitz WJ, Westbrook CK, Curran HJ (2011b) Proc Combust Inst 33:193–200CrossRef Mehl M, Pitz WJ, Westbrook CK, Curran HJ (2011b) Proc Combust Inst 33:193–200CrossRef
Zurück zum Zitat Merchant SS, Goldsmith CF, Vandeputte AG, Burke MP, Klippenstein SJ, Green WH (2015) Combust Flame 162:3658–3673CrossRef Merchant SS, Goldsmith CF, Vandeputte AG, Burke MP, Klippenstein SJ, Green WH (2015) Combust Flame 162:3658–3673CrossRef
Zurück zum Zitat Mittal G, Sung CJ (2007) Combust Flame 150(4):355–368 Mittal G, Sung CJ (2007) Combust Flame 150(4):355–368
Zurück zum Zitat Montgomery CJ, Cremer MA, Chen JY, Westbrook CK, Maurice LQ (2002) J Propul Power 18(1):192–198CrossRef Montgomery CJ, Cremer MA, Chen JY, Westbrook CK, Maurice LQ (2002) J Propul Power 18(1):192–198CrossRef
Zurück zum Zitat Moreac G, Dagaut P, Roesler J, Cathonnet M (2006) Combust Flame 145(3):512–520 Moreac G, Dagaut P, Roesler J, Cathonnet M (2006) Combust Flame 145(3):512–520
Zurück zum Zitat Naik CV, Pitz WJ, Westbrook CK, Sjöberg M, Dec JE, Orme J et al (2005) Detailed chemical kinetic modelling of surrogate fuels for gasoline and application to an HCCI engine. SAE technical papers Naik CV, Pitz WJ, Westbrook CK, Sjöberg M, Dec JE, Orme J et al (2005) Detailed chemical kinetic modelling of surrogate fuels for gasoline and application to an HCCI engine. SAE technical papers
Zurück zum Zitat Noehre C, Andersson M, Johansson B, Hultqvist A (2006) Characterisation of partially premixed combustion. SAE Technical Paper No. 2006–01–3412 Noehre C, Andersson M, Johansson B, Hultqvist A (2006) Characterisation of partially premixed combustion. SAE Technical Paper No. 2006–01–3412
Zurück zum Zitat Patel A, Kong SC, Reitz RD (2004) Development, and validation of a reduced reaction mechanism for HCCI engine simulations. SAE Paper 2004–01–0558 Patel A, Kong SC, Reitz RD (2004) Development, and validation of a reduced reaction mechanism for HCCI engine simulations. SAE Paper 2004–01–0558
Zurück zum Zitat Patil D Analysis of injection parameters influencing gasoline direct injection compression ignition (GDICI) engine operation in LTC using Naphtha Patil D Analysis of injection parameters influencing gasoline direct injection compression ignition (GDICI) engine operation in LTC using Naphtha
Zurück zum Zitat Persson H et al Cylinder-to-cylinder and cycle-to-cycle variations at HCCI operation with trapped residuals. SAE Technical Paper No. 2005–01–0130 Persson H et al Cylinder-to-cylinder and cycle-to-cycle variations at HCCI operation with trapped residuals. SAE Technical Paper No. 2005–01–0130
Zurück zum Zitat Persson H et al The effect of intake temperature on HCCI operation using negative valve overlap. SAE Technical Paper No. 2004–01–0944 Persson H et al The effect of intake temperature on HCCI operation using negative valve overlap. SAE Technical Paper No. 2004–01–0944
Zurück zum Zitat Ra Y, Reitz RD (2008) A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels. Combust Flame 155(4):713–738CrossRef Ra Y, Reitz RD (2008) A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels. Combust Flame 155(4):713–738CrossRef
Zurück zum Zitat Raj A (2010) Formation, growth, and oxidation of soot—a numerical study. PhD thesis, University of Cambridge Raj A (2010) Formation, growth, and oxidation of soot—a numerical study. PhD thesis, University of Cambridge
Zurück zum Zitat Reitz RD, Duraisamy G (2015) Review of high efficiency and clean reactivity-controlled compression ignition (RCCI) combustion in internal combustion engines. Prog Energy Combust 46:12–71CrossRef Reitz RD, Duraisamy G (2015) Review of high efficiency and clean reactivity-controlled compression ignition (RCCI) combustion in internal combustion engines. Prog Energy Combust 46:12–71CrossRef
Zurück zum Zitat Richards K, Senecal P, Pomraning E (2013) CONVERGE 2.1. 0 Theory Manual, Convergent Science, Inc, Middleton, WI Richards K, Senecal P, Pomraning E (2013) CONVERGE 2.1. 0 Theory Manual, Convergent Science, Inc, Middleton, WI
Zurück zum Zitat Sarathy SM, Kukkadapu G, Mehl M, Javed T, Ahmed A, Naser N, Tekawade A, Kosiba G, Alabbad M, Singh E, Park S, Rashidi MA, Chung SH, Roberts WL, Oehlschlaeger MA, Sung C-J, Farooq A (2016) Compositional effects on the ignition of FACE gasolines. Combust Flame 169:171–193CrossRef Sarathy SM, Kukkadapu G, Mehl M, Javed T, Ahmed A, Naser N, Tekawade A, Kosiba G, Alabbad M, Singh E, Park S, Rashidi MA, Chung SH, Roberts WL, Oehlschlaeger MA, Sung C-J, Farooq A (2016) Compositional effects on the ignition of FACE gasolines. Combust Flame 169:171–193CrossRef
Zurück zum Zitat Sazhin S, Elwardany A, Krutitskii P, Castanet G, Lemoine F, Sazhina E, Heikal M (2010) A simplified model for bi-component droplet heating and evaporation. Int J Heat Mass Transf 53:4495–4505 Sazhin S, Elwardany A, Krutitskii P, Castanet G, Lemoine F, Sazhina E, Heikal M (2010) A simplified model for bi-component droplet heating and evaporation. Int J Heat Mass Transf 53:4495–4505
Zurück zum Zitat Shahir S, Masjuki H, Kalam M, Imran A, Fattah I, Sanjid A (2014) Feasibility of diesel–biodiesel–ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety, and combustion. Renew Sustain Energy Rev 32:379–395CrossRef Shahir S, Masjuki H, Kalam M, Imran A, Fattah I, Sanjid A (2014) Feasibility of diesel–biodiesel–ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety, and combustion. Renew Sustain Energy Rev 32:379–395CrossRef
Zurück zum Zitat Shang Q, Jiang W, Lu H, Liang B (2010) Properties of Tung oil biodiesel and its blends with diesel. Biores Technol 101:826–828CrossRef Shang Q, Jiang W, Lu H, Liang B (2010) Properties of Tung oil biodiesel and its blends with diesel. Biores Technol 101:826–828CrossRef
Zurück zum Zitat Shen HPS, Vanderover J, Oehlschlaeger MA (2009) Proc Combust Inst 32(1):165–172CrossRef Shen HPS, Vanderover J, Oehlschlaeger MA (2009) Proc Combust Inst 32(1):165–172CrossRef
Zurück zum Zitat Singh E, Badra J, Mehl M, Sarathy SM (2017) Chemical kinetic insights into the octane number and octane sensitivity of gasoline surrogate mixtures. Energy Fuels d31(2017):1945–1960 Singh E, Badra J, Mehl M, Sarathy SM (2017) Chemical kinetic insights into the octane number and octane sensitivity of gasoline surrogate mixtures. Energy Fuels d31(2017):1945–1960
Zurück zum Zitat Singh H, Sonawane U, Jena A, Agarwal AK (2021) Potential of gasoline compression ignition combustion for heavy-duty applications in internal combustion engines. In: Singh AP, Kumar D, Agarwal AK (eds) Alternative fuels and advanced combustion techniques as sustainable solutions for internal combustion engines. Energy, environment, and sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-1513-9_13 Singh H, Sonawane U, Jena A, Agarwal AK (2021) Potential of gasoline compression ignition combustion for heavy-duty applications in internal combustion engines. In: Singh AP, Kumar D, Agarwal AK (eds) Alternative fuels and advanced combustion techniques as sustainable solutions for internal combustion engines. Energy, environment, and sustainability. Springer, Singapore. https://​doi.​org/​10.​1007/​978-981-16-1513-9_​13
Zurück zum Zitat Sitty G, Taft N (2016) What will the global light-duty vehicle fleet look like through 2050? Fuel Freedom Foundation Sitty G, Taft N (2016) What will the global light-duty vehicle fleet look like through 2050? Fuel Freedom Foundation
Zurück zum Zitat Soyhan HS, Løvås T, Mauss F (2001) A stochastic simulation of an HCCI engine using an automatically reduced mechanism, ASME 2001-ICE-416 Soyhan HS, Løvås T, Mauss F (2001) A stochastic simulation of an HCCI engine using an automatically reduced mechanism, ASME 2001-ICE-416
Zurück zum Zitat Speight JG (2019) Handbook of industrial hydrocarbon processes. Gulf Professional Publishing Speight JG (2019) Handbook of industrial hydrocarbon processes. Gulf Professional Publishing
Zurück zum Zitat Speight JG, El-Gendy NS (2017) Introduction to petroleum biotechnology. Gulf Professional Publishing Speight JG, El-Gendy NS (2017) Introduction to petroleum biotechnology. Gulf Professional Publishing
Zurück zum Zitat Speight JG, El-Gendy NS (2018) Refinery products and by-products. Introduction to petroleum biotechnology, 1st ed. In: Speight JG, El-Gendy NS (ed) (pp 41–68) Speight JG, El-Gendy NS (2018) Refinery products and by-products. Introduction to petroleum biotechnology, 1st ed. In: Speight JG, El-Gendy NS (ed) (pp 41–68)
Zurück zum Zitat Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sustain Energy Rev 4:111–133 Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sustain Energy Rev 4:111–133
Zurück zum Zitat Tanaka S, Ayala F, Keck JC (2003) Combust Flame 133:467–481 Tanaka S, Ayala F, Keck JC (2003) Combust Flame 133:467–481
Zurück zum Zitat Tat ME, Van Gerpen JH (1999) The kinematic viscosity of biodiesel and its blends with diesel fuel. J Am Oil Chemist Soc 76:1511–1513 Tat ME, Van Gerpen JH (1999) The kinematic viscosity of biodiesel and its blends with diesel fuel. J Am Oil Chemist Soc 76:1511–1513
Zurück zum Zitat Tomlin AS, Turanyi T, Pilling MJ (1997) Comprehensive chemical kinetics. Elsevier, Amsterdam, p 293 Tomlin AS, Turanyi T, Pilling MJ (1997) Comprehensive chemical kinetics. Elsevier, Amsterdam, p 293
Zurück zum Zitat Wang H, Yao M, Reitz RD (2013) Development of a reduced primary reference fuel mechanism for internal combustion engine combustion simulations. Energy Fuel 27(12):7843–7853 Wang H, Yao M, Reitz RD (2013) Development of a reduced primary reference fuel mechanism for internal combustion engine combustion simulations. Energy Fuel 27(12):7843–7853
Zurück zum Zitat Wang H, Yao M, Yue Z, Jia M, Reitz RD (2015) A reduced toluene reference fuel chemical kinetic mechanism for combustion and polycyclic-aromatic hydrocarbon predictions. Combust Flame 162(6):2390–2404CrossRef Wang H, Yao M, Yue Z, Jia M, Reitz RD (2015) A reduced toluene reference fuel chemical kinetic mechanism for combustion and polycyclic-aromatic hydrocarbon predictions. Combust Flame 162(6):2390–2404CrossRef
Zurück zum Zitat Wang Z, Li F, Wang Y (2017) A generalised kinetic model with variable octane number for engine knock prediction. Fuel 188:489–499CrossRef Wang Z, Li F, Wang Y (2017) A generalised kinetic model with variable octane number for engine knock prediction. Fuel 188:489–499CrossRef
Zurück zum Zitat Westbrook CK, Pitz WJ, Mehl M, Curran HJ (2011) Detailed chemical kinetic reaction mechanisms for primary reference fuels for diesel cetane number and spark ignition octane number. Proc Combust Inst 33:185–192CrossRef Westbrook CK, Pitz WJ, Mehl M, Curran HJ (2011) Detailed chemical kinetic reaction mechanisms for primary reference fuels for diesel cetane number and spark ignition octane number. Proc Combust Inst 33:185–192CrossRef
Zurück zum Zitat Zádor J, Taatjes CA, Fernandes RX (2011) Prog Energy Combust Sci 37:371–421CrossRef Zádor J, Taatjes CA, Fernandes RX (2011) Prog Energy Combust Sci 37:371–421CrossRef
Zurück zum Zitat Zhong B-J, Zheng D (2014) A chemical mechanism for ignition and oxidation of multi-component gasoline surrogate fuels. Fuel 128:458–466CrossRef Zhong B-J, Zheng D (2014) A chemical mechanism for ignition and oxidation of multi-component gasoline surrogate fuels. Fuel 128:458–466CrossRef
Zurück zum Zitat Zhou D, Yang W, An H, Li J, Kraft M (2016) An enhanced primary reference fuel mechanism considering conventional fuel chemistry in engine simulation. J Eng Gas Turb Power 138(9) Zhou D, Yang W, An H, Li J, Kraft M (2016) An enhanced primary reference fuel mechanism considering conventional fuel chemistry in engine simulation. J Eng Gas Turb Power 138(9)
Metadaten
Titel
Reaction Mechanisms and Fuel Surrogates for Naphtha/Low Octane Fractions-Application for Gasoline Compression Ignition Engine
verfasst von
Harsimran Singh
Avinash Kumar Agarwal
Copyright-Jahr
2022
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-8735-8_11

    Premium Partner