Skip to main content
Top

2018 | OriginalPaper | Chapter

2. Readout Methods for BJT-Based Temperature Sensors

Authors : Kamran Souri, Kofi A. A. Makinwa

Published in: Energy-Efficient Smart Temperature Sensors in CMOS Technology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As discussed in the previous chapter, BJT-based temperature sensors are promising candidates for use in wireless temperature sensing applications. In this chapter, we first describe the operating principle of BJT-based sensors, followed by an overview of various readout methods. The energy-efficiency of these methods is then discussed, and compared to the ultimate achievable efficiency of BJT-based sensors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS temperature sensor with a 3σ inaccuracy of ± 0. 1∘C from − 55∘C to 125∘C. IEEE J. Solid State Circuits 40(12), 2805–2815 (2005) M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS temperature sensor with a 3σ inaccuracy of ± 0. 1C from − 55C to 125C. IEEE J. Solid State Circuits 40(12), 2805–2815 (2005)
2.
go back to reference A.L. Aita, M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ± 0. 25∘C (3σ) from − 70∘C to 130∘C, in Digest of Technical Papers ISSCC, Feb 2009, pp. 342–343 A.L. Aita, M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ± 0. 25C (3σ) from − 70C to 130C, in Digest of Technical Papers ISSCC, Feb 2009, pp. 342–343
3.
go back to reference J.F. Creemer, F. Fruett, G.C. Meijer, P.J. French, The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance. IEEE Sens. J. 1(2), 98–108 (2001)CrossRef J.F. Creemer, F. Fruett, G.C. Meijer, P.J. French, The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance. IEEE Sens. J. 1(2), 98–108 (2001)CrossRef
4.
go back to reference F. Fruett, G.C. Meijer, The Piezojunction Effect in Silicon Integrated Circuits and Sensors (Kluwer Academic, Boston, 2002) F. Fruett, G.C. Meijer, The Piezojunction Effect in Silicon Integrated Circuits and Sensors (Kluwer Academic, Boston, 2002)
5.
go back to reference M.A.P. Pertijs, J.H. Huijsing, Precision Temperature Sensors in CMOS Technology (Springer, Dordrecht, 2006) M.A.P. Pertijs, J.H. Huijsing, Precision Temperature Sensors in CMOS Technology (Springer, Dordrecht, 2006)
6.
go back to reference G. Wang, G.C. Meijer, The temperature characteristics of bipolar transistors fabricated in CMOS technology. Sens. Actuators A 87, 81–89 (2000)CrossRef G. Wang, G.C. Meijer, The temperature characteristics of bipolar transistors fabricated in CMOS technology. Sens. Actuators A 87, 81–89 (2000)CrossRef
7.
go back to reference M.A.P. Pertijs, A. Niederkorn, M. Xu, B. McKillop, A. Bakker, J.H. Huijsing, A CMOS smart temperature sensor with a 3σ inaccuracy of ± 0. 5∘C from − 50∘C to 120∘C. IEEE J. Solid State Circuits 40(2), 454–461 (2005) M.A.P. Pertijs, A. Niederkorn, M. Xu, B. McKillop, A. Bakker, J.H. Huijsing, A CMOS smart temperature sensor with a 3σ inaccuracy of ± 0. 5C from − 50C to 120C. IEEE J. Solid State Circuits 40(2), 454–461 (2005)
8.
go back to reference K. Souri, An energy-efficient smart temperature sensor for RFID applications. M.Sc. dissertation, Delft University of Technology, Delft, Oct. 2009 K. Souri, An energy-efficient smart temperature sensor for RFID applications. M.Sc. dissertation, Delft University of Technology, Delft, Oct. 2009
9.
go back to reference G.C. Meijer, Integrated circuits and components for bandgap references and temperature transducers. Ph.D. dissertation, Delft University of Technology, Delft, March 1982 G.C. Meijer, Integrated circuits and components for bandgap references and temperature transducers. Ph.D. dissertation, Delft University of Technology, Delft, March 1982
10.
go back to reference A. Bakker, J.H. Huijsing, High-Accuracy CMOS Smart Temperature Sensors (Kluwer Academic, Boston, 2000)CrossRef A. Bakker, J.H. Huijsing, High-Accuracy CMOS Smart Temperature Sensors (Kluwer Academic, Boston, 2000)CrossRef
11.
go back to reference M. Law, S. Lu, T. Wu, A. Bermak, P. Mak, R.P. Martins, A 1. 1μW CMOS smart temperature sensor with an inaccuracy of ± 0. 2∘C (3σ) for clinical temperature monitoring. IEEE Sens. J. 16(8), 2272–2281 (2016) M. Law, S. Lu, T. Wu, A. Bermak, P. Mak, R.P. Martins, A 1. 1μW CMOS smart temperature sensor with an inaccuracy of ± 0. 2C (3σ) for clinical temperature monitoring. IEEE Sens. J. 16(8), 2272–2281 (2016)
12.
go back to reference K.B. Klaassen, Digitally controlled absolute voltage division. IEEE Trans. Instrum. Meas. 24(2), 106–112 (1975)CrossRef K.B. Klaassen, Digitally controlled absolute voltage division. IEEE Trans. Instrum. Meas. 24(2), 106–112 (1975)CrossRef
13.
go back to reference A. Hastings, The Art of Analog Layout (Prentice Hall, New Jersey, 2001) A. Hastings, The Art of Analog Layout (Prentice Hall, New Jersey, 2001)
15.
go back to reference K. Souri, Y. Chae, K.A.A. Makinwa, A CMOS temperature sensor with a voltage-calibrated inaccuracy of ± 0. 15∘C (3σ) from − 55∘C to 125∘C. IEEE J. Solid State Circuits 48(1), 292–301 (2013) K. Souri, Y. Chae, K.A.A. Makinwa, A CMOS temperature sensor with a voltage-calibrated inaccuracy of ± 0. 15C (3σ) from − 55C to 125C. IEEE J. Solid State Circuits 48(1), 292–301 (2013)
16.
go back to reference C.-H. Weng et al., A CMOS thermistor-embedded continuous-time delta-sigma temperature sensor with a resolution FoM of 0.65pJ∘C2. IEEE J. Solid State Circuits 50(11), 2491–2500 (2015) C.-H. Weng et al., A CMOS thermistor-embedded continuous-time delta-sigma temperature sensor with a resolution FoM of 0.65pJC2. IEEE J. Solid State Circuits 50(11), 2491–2500 (2015)
17.
go back to reference A. Heidary et al., A BJT-based CMOS temperature sensor with a 3.6pJ∘C2 resolution FoM, in Digest of Technical Papers ISSCC, Feb 2014, pp. 224–225 A. Heidary et al., A BJT-based CMOS temperature sensor with a 3.6pJC2 resolution FoM, in Digest of Technical Papers ISSCC, Feb 2014, pp. 224–225
18.
go back to reference M. Tuthill, A switched-current, switched-capacitor temperature sensor in 0. 6 −μm CMOS. IEEE J. Solid State Circuits 33(7), 1117–1122 (1998) M. Tuthill, A switched-current, switched-capacitor temperature sensor in 0. 6 −μm CMOS. IEEE J. Solid State Circuits 33(7), 1117–1122 (1998)
19.
go back to reference A. Bakker, J.H. Huijsing, Micropower CMOS temperature sensor with digital output. IEEE J. Solid State Circuits 31(7), 933–937 (1996)CrossRef A. Bakker, J.H. Huijsing, Micropower CMOS temperature sensor with digital output. IEEE J. Solid State Circuits 31(7), 933–937 (1996)CrossRef
20.
go back to reference M.A.P. Pertijs, A. Bakker, J.H. Huijsing, A high-accuracy temperature sensor with second-order curvature correction and digital bus interface, in Proceedings of ISCAS, vol. 1, May 2001, pp. 368–371 M.A.P. Pertijs, A. Bakker, J.H. Huijsing, A high-accuracy temperature sensor with second-order curvature correction and digital bus interface, in Proceedings of ISCAS, vol. 1, May 2001, pp. 368–371
21.
go back to reference H. Lakdawala et al., A 1.05V 1.6mW 0. 45∘C 3σ-resolution \(\Delta \Sigma\)-based temperature sensor with parasitic-resistance compensation in 32nm Digital CMOS process. IEEE J. Solid State Circuits 44(12), 3621–3630 (2009) H. Lakdawala et al., A 1.05V 1.6mW 0. 45C 3σ-resolution \(\Delta \Sigma\)-based temperature sensor with parasitic-resistance compensation in 32nm Digital CMOS process. IEEE J. Solid State Circuits 44(12), 3621–3630 (2009)
22.
go back to reference J. Markus, J. Silva, G.C. Temes, Theory and applications of incremental \(\Sigma \Delta\) converters. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 51(4), 678–690 (2004) J. Markus, J. Silva, G.C. Temes, Theory and applications of incremental \(\Sigma \Delta\) converters. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 51(4), 678–690 (2004)
23.
go back to reference S.Z. Asl et al., A 1.55x0.85mm2 3ppm 1. 0μA 32.768kHz MEMS-based oscillator, in Digest of Technical Papers ISSCC, Feb 2014, pp. 226–227 S.Z. Asl et al., A 1.55x0.85mm2 3ppm 1. 0μA 32.768kHz MEMS-based oscillator, in Digest of Technical Papers ISSCC, Feb 2014, pp. 226–227
24.
go back to reference P. Harpe et al., A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step, in Digest of Technical Papers ISSCC, Feb 2012, pp. 472–474 P. Harpe et al., A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step, in Digest of Technical Papers ISSCC, Feb 2012, pp. 472–474
25.
go back to reference P. Harpe et al., A 0.7V 7-to-10 bit 0-to-2MS/s flexible SAR ADC for ultra low-power wireless sensor nodes, in Proceedings of ESSCIRC, Sept. 2012, pp. 373–376 P. Harpe et al., A 0.7V 7-to-10 bit 0-to-2MS/s flexible SAR ADC for ultra low-power wireless sensor nodes, in Proceedings of ESSCIRC, Sept. 2012, pp. 373–376
26.
go back to reference N. Verma, A.P. Chandrakasan, An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes. IEEE J. Solid State Circuits 42(6), 1196–1205 (2007)CrossRef N. Verma, A.P. Chandrakasan, An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes. IEEE J. Solid State Circuits 42(6), 1196–1205 (2007)CrossRef
27.
go back to reference J. Hao Cheong et al., A 400-nW 19.5-fJ/conversion-step 8-ENOB 80-kS/s SAR ADC in 0. 18 −μm CMOS. IEEE Trans. Circuits Syst.-II 58(7), 407–411 (2011) J. Hao Cheong et al., A 400-nW 19.5-fJ/conversion-step 8-ENOB 80-kS/s SAR ADC in 0. 18 −μm CMOS. IEEE Trans. Circuits Syst.-II 58(7), 407–411 (2011)
Metadata
Title
Readout Methods for BJT-Based Temperature Sensors
Authors
Kamran Souri
Kofi A. A. Makinwa
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-62307-8_2