Skip to main content
Top

2002 | Supplement | Chapter

Real Potentials of Elasticity Theory

Author : A. M. Linkov

Published in: Boundary Integral Equations in Elasticity Theory

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Consider the elastostatics equations for a region D, finite or infinite: 1.1% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq % GHciITcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOa % IyRaamiEamaaBaaaleaacaWGQbaabeaaaaGccqGH9aqpcaaIWaGaai % ilaiaaywW7caWGPbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaa % iodaaaa!484E!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\frac{{\partial {\sigma _{ij}}}}{{\partial {x_j}}} = 0,\quad i = 1,2,3$$, where σ ij are components of a stress tensor in the global co-ordinates which are assumed to be Cartesian. Here we use Einstein’s summation rule. The components of the stress tensor are connected to the components of the strain tensor by Hooke’s law: 1.2% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS % baaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadogadaWgaaWcbaGa % amyAaiaadQgacaWGRbGaamiBaaqabaGccqaH1oqzdaWgaaWcbaGaam % 4AaiaadYgaaeqaaOGaaiilaiaaywW7caWGPbGaaiilaiaadQgacqGH % 9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maaaa!4CCF!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\sigma _{ij}} = {c_{ijkl}}{\varepsilon _{kl}},\quad i,j = 1,2,3$$, where c ijkl = c ijlk = c klij are elastic constants; ε kl are the components of the strain tensor: 1.3% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS % baaSqaaiaadUgacaWGSbaabeaakiabg2da9maalaaabaGaaGymaaqa % aiaaikdaaaWaaeWaaeaadaWcaaqaaiabgkGi2kaadwhadaWgaaWcba % Gaam4AaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadYgaaeqa % aaaakiabgUcaRmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaWGSb % aabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaam4AaaqabaaaaaGc % caGLOaGaayzkaaGaaiilaaaa!4D9A!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\varepsilon _{kl}} = \frac{1}{2}\left( {\frac{{\partial {u_k}}}{{\partial {x_l}}} + \frac{{\partial {u_l}}}{{\partial {x_k}}}} \right),$$, u k are the components of the displacement vector u. Substitution of (1.3) into (1.2) and the result into (1.1) leads to the complete system of elasticity theory in terms of displacements: 1.4% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa % aaleaacaWGPbGaamOAaiaadUgacaWGSbaabeaakmaalaaabaGaeyOa % Iy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaaBaaaleaacaWGRbaabe % aaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaGccqGHciIT % caWG4bWaaSbaaSqaaiaadYgaaeqaaaaakiabg2da9iaaicdacaGGUa % aaaa!48DD!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${c_{ijkl}}\frac{{{\partial ^2}{u_k}}}{{\partial {x_j}\partial {x_l}}} = 0.$$.

Metadata
Title
Real Potentials of Elasticity Theory
Author
A. M. Linkov
Copyright Year
2002
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-015-9914-6_2

Premium Partners