Skip to main content
Top
Published in: Cellulose 11/2019

10-06-2019 | Review Paper

Recent progress in bio-based aerogel absorbents for oil/water separation

Authors: Wen-Jie Yang, Anthony Chun Yin Yuen, Ao Li, Bo Lin, Timothy Bo Yuan Chen, Wei Yang, Hong-Dian Lu, Guan Heng Yeoh

Published in: Cellulose | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Crude oil leakage from tankers, offshore platforms, drilling rigs and wells, causing severe pollution to the environment has led to irreversible damage to ocean habitat and inhabitants. It has become one of the greatest global environmental concerns which has recently attracted major public awareness. In addition, the contamination of sea and inhabitants. It has significantly harmed the fishing and seafood industry, and even raises health and life issues for millions of human beings. Until now, there is still no viable and practical method to effectively reduce the damage from crude oil spill. This has attracted numerous researchers’ attention. For developing an environmentally friendly and cost-effective polymer absorbent for oil spill cleaning. Recently, among all the efforts, it is proven that biomass aerogel can be used as an outstanding absorbent for oil–water separation, which is a feasible solution for tackling the crude oil issue. In this article, a comprehensive review on the current state-of-art for biomass-based aerogels utilised in the field of oil/water separation is provided. This includes the preparation procedures, fabrication processes, and the categorisation of various types of aerogels. Additionally, the future direction and technological advancement will be discussed in detail.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Araby S, Qiu A, Wang R, Zhao Z, Wang C-H, Ma J (2016) Aerogels based on carbon nanomaterials. J Mater Sci 51:9157–9189CrossRef Araby S, Qiu A, Wang R, Zhao Z, Wang C-H, Ma J (2016) Aerogels based on carbon nanomaterials. J Mater Sci 51:9157–9189CrossRef
go back to reference Arboleda JC, Hughes M, Lucia LA, Laine J, Ekman K, Rojas OJ (2013) Soy protein–nanocellulose composite aerogels. Cellulose 20:2417–2426CrossRef Arboleda JC, Hughes M, Lucia LA, Laine J, Ekman K, Rojas OJ (2013) Soy protein–nanocellulose composite aerogels. Cellulose 20:2417–2426CrossRef
go back to reference Bi H et al (2014) Carbon microbelt aerogel prepared by waste paper: an efficient and recyclable sorbent for oils and organic solvents. Small 10:3544–3550CrossRefPubMed Bi H et al (2014) Carbon microbelt aerogel prepared by waste paper: an efficient and recyclable sorbent for oils and organic solvents. Small 10:3544–3550CrossRefPubMed
go back to reference Cai T, Wang H, Jin C, Sun Q, Nie Y (2018) Fabrication of nitrogen-doped porous electrically conductive carbon aerogel from waste cabbage for supercapacitors and oil/water separation. J Mater Sci: Mater Electron 29:4334–4344 Cai T, Wang H, Jin C, Sun Q, Nie Y (2018) Fabrication of nitrogen-doped porous electrically conductive carbon aerogel from waste cabbage for supercapacitors and oil/water separation. J Mater Sci: Mater Electron 29:4334–4344
go back to reference Calcagnile P, Caputo I, Cannoletta D, Bettini S, Valli L, Demitri C (2017) A bio-based composite material for water remediation from oily contaminants. Mater Des 134:374–382CrossRef Calcagnile P, Caputo I, Cannoletta D, Bettini S, Valli L, Demitri C (2017) A bio-based composite material for water remediation from oily contaminants. Mater Des 134:374–382CrossRef
go back to reference Cao N, Lyu Q, Li J, Wang Y, Yang B, Szunerits S, Boukherroub R (2017) Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chem Eng J 326:17–28CrossRef Cao N, Lyu Q, Li J, Wang Y, Yang B, Szunerits S, Boukherroub R (2017) Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chem Eng J 326:17–28CrossRef
go back to reference Cervin NT, Aulin C, Larsson PT, Wågberg L (2011) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRef Cervin NT, Aulin C, Larsson PT, Wågberg L (2011) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRef
go back to reference Cervin NT, Johansson E, Larsson PA, Wagberg L (2016) Strong, water-durable, and wet-resilient cellulose nanofibril-stabilized foams from oven drying. ACS Appl Mater Interfaces 8:11682–11689CrossRefPubMed Cervin NT, Johansson E, Larsson PA, Wagberg L (2016) Strong, water-durable, and wet-resilient cellulose nanofibril-stabilized foams from oven drying. ACS Appl Mater Interfaces 8:11682–11689CrossRefPubMed
go back to reference Chaudhary JP, Vadodariya N, Nataraj SK, Meena R (2015) Chitosan-based aerogel membrane for robust oil-in-water emulsion separation. ACS Appl Mater Interfaces 7:24957–24962CrossRefPubMed Chaudhary JP, Vadodariya N, Nataraj SK, Meena R (2015) Chitosan-based aerogel membrane for robust oil-in-water emulsion separation. ACS Appl Mater Interfaces 7:24957–24962CrossRefPubMed
go back to reference Chen W et al (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. Chemsuschem 7:154–161CrossRefPubMed Chen W et al (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. Chemsuschem 7:154–161CrossRefPubMed
go back to reference Chen B, Ma Q, Tan C, Lim T-T, Huang L, Zhang H (2015) Carbon-based sorbents with three-dimensional architectures for water remediation. Small 11:3319–3336CrossRefPubMed Chen B, Ma Q, Tan C, Lim T-T, Huang L, Zhang H (2015) Carbon-based sorbents with three-dimensional architectures for water remediation. Small 11:3319–3336CrossRefPubMed
go back to reference Chen W et al (2016) Sustainable carbon aerogels derived from nanofibrillated cellulose as high-performance absorption materials. Adv Mater Interfaces 3:1600004CrossRef Chen W et al (2016) Sustainable carbon aerogels derived from nanofibrillated cellulose as high-performance absorption materials. Adv Mater Interfaces 3:1600004CrossRef
go back to reference Chen C, Li F, Zhang Y, Wang B, Fan Y, Wang X, Sun R (2018) Compressive, ultralight and fire-resistant lignin-modified graphene aerogels as recyclable absorbents for oil and organic solvents. Chem Eng J 350:173–180CrossRef Chen C, Li F, Zhang Y, Wang B, Fan Y, Wang X, Sun R (2018) Compressive, ultralight and fire-resistant lignin-modified graphene aerogels as recyclable absorbents for oil and organic solvents. Chem Eng J 350:173–180CrossRef
go back to reference Cheng H, Gu B, Pennefather MP, Nguyen TX, Phan-Thien N, Duong HM (2017) Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Mater Des 130:452–458CrossRef Cheng H, Gu B, Pennefather MP, Nguyen TX, Phan-Thien N, Duong HM (2017) Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Mater Des 130:452–458CrossRef
go back to reference Chin SF, Binti Romainor AN, Pang SC (2014) Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater Lett 115:241–243CrossRef Chin SF, Binti Romainor AN, Pang SC (2014) Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater Lett 115:241–243CrossRef
go back to reference Dai J et al (2018) 3D macroscopic superhydrophobic magnetic porous carbon aerogel converted from biorenewable popcorn for selective oil-water separation. Mater Des 139:122–131CrossRef Dai J et al (2018) 3D macroscopic superhydrophobic magnetic porous carbon aerogel converted from biorenewable popcorn for selective oil-water separation. Mater Des 139:122–131CrossRef
go back to reference Dai J et al (2019) TiO2-alginate composite aerogels as novel oil/water separation and wastewater remediation filters. Compos Part B Eng 160:480–487CrossRef Dai J et al (2019) TiO2-alginate composite aerogels as novel oil/water separation and wastewater remediation filters. Compos Part B Eng 160:480–487CrossRef
go back to reference De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRef De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRef
go back to reference de Oliveira PB, Godinho M, Zattera AJ (2018) Oils sorption on hydrophobic nanocellulose aerogel obtained from the wood furniture industry waste. Cellulose 25:3105–3119CrossRef de Oliveira PB, Godinho M, Zattera AJ (2018) Oils sorption on hydrophobic nanocellulose aerogel obtained from the wood furniture industry waste. Cellulose 25:3105–3119CrossRef
go back to reference Deuber F, Mousavi S, Federer L, Adlhart C (2017) Amphiphilic nanofiber-based aerogels for selective liquid absorption from electrospun biopolymers. Adv Mater Interfaces 4:1700065CrossRef Deuber F, Mousavi S, Federer L, Adlhart C (2017) Amphiphilic nanofiber-based aerogels for selective liquid absorption from electrospun biopolymers. Adv Mater Interfaces 4:1700065CrossRef
go back to reference Duan B, Gao H, He M, Zhang L (2014) Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. ACS Appl Mater Interfaces 6:19933–19942CrossRefPubMed Duan B, Gao H, He M, Zhang L (2014) Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. ACS Appl Mater Interfaces 6:19933–19942CrossRefPubMed
go back to reference Durgadevi N, Swarnalatha V (2017) Polythiophene functionalized hydrophobic cellulose kitchen wipe sponge and cellulose fabric for effective oil–water separation. RSC Adv 7:34866–34874CrossRef Durgadevi N, Swarnalatha V (2017) Polythiophene functionalized hydrophobic cellulose kitchen wipe sponge and cellulose fabric for effective oil–water separation. RSC Adv 7:34866–34874CrossRef
go back to reference Escudero RR, Robitzer M, Di Renzo F, Quignard F (2009) Alginate aerogels as absorbents of polar molecules from liquid hydrocarbons: hexanol as probe molecule. Carbohydr Polym 75:52–57CrossRef Escudero RR, Robitzer M, Di Renzo F, Quignard F (2009) Alginate aerogels as absorbents of polar molecules from liquid hydrocarbons: hexanol as probe molecule. Carbohydr Polym 75:52–57CrossRef
go back to reference Fan P et al (2017) Facile and green fabrication of cellulosed based aerogels for lampblack filtration from waste newspaper. Carbohydr Polym 162:108–114CrossRefPubMed Fan P et al (2017) Facile and green fabrication of cellulosed based aerogels for lampblack filtration from waste newspaper. Carbohydr Polym 162:108–114CrossRefPubMed
go back to reference Fan B et al (2018a) Natural cellulose nanofiber extracted from cell wall of bamboo leaf and its derived multifunctional aerogel. Polym Compos 39:3869–3876CrossRef Fan B et al (2018a) Natural cellulose nanofiber extracted from cell wall of bamboo leaf and its derived multifunctional aerogel. Polym Compos 39:3869–3876CrossRef
go back to reference Fan J et al (2018b) Robust nanofibrillated cellulose hydro/aerogels from benign solution/solvent exchange treatment. ACS Sustain Chem Eng 6:6624–6634CrossRef Fan J et al (2018b) Robust nanofibrillated cellulose hydro/aerogels from benign solution/solvent exchange treatment. ACS Sustain Chem Eng 6:6624–6634CrossRef
go back to reference Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175CrossRef Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175CrossRef
go back to reference Gao Y et al (2014) Highly efficient and recyclable carbon soot sponge for oil cleanup. ACS Appl Mater Interfaces 6:5924–5929CrossRefPubMed Gao Y et al (2014) Highly efficient and recyclable carbon soot sponge for oil cleanup. ACS Appl Mater Interfaces 6:5924–5929CrossRefPubMed
go back to reference Gao R, Lu Y, Xiao S, Li J (2017) Facile fabrication of nanofibrillated chitin/Ag2O heterostructured aerogels with high iodine capture efficiency. Sci Rep 7:4303CrossRefPubMedPubMedCentral Gao R, Lu Y, Xiao S, Li J (2017) Facile fabrication of nanofibrillated chitin/Ag2O heterostructured aerogels with high iodine capture efficiency. Sci Rep 7:4303CrossRefPubMedPubMedCentral
go back to reference Gao R et al (2018) Mussel adhesive-inspired design of superhydrophobic nanofibrillated cellulose aerogels for oil/water separation. ACS Sustain Chem Eng 6:9047–9055CrossRef Gao R et al (2018) Mussel adhesive-inspired design of superhydrophobic nanofibrillated cellulose aerogels for oil/water separation. ACS Sustain Chem Eng 6:9047–9055CrossRef
go back to reference Guan H, Cheng Z, Wang X (2018) Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 12:10365–10373CrossRefPubMed Guan H, Cheng Z, Wang X (2018) Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 12:10365–10373CrossRefPubMed
go back to reference Guo X, Qu L, Zhu S, Tian M, Zhang X, Sun K, Tang X (2016) Preparation of three-dimensional chitosan-graphene oxide aerogel for residue oil removal. Water Environ Res 88:768–778CrossRefPubMed Guo X, Qu L, Zhu S, Tian M, Zhang X, Sun K, Tang X (2016) Preparation of three-dimensional chitosan-graphene oxide aerogel for residue oil removal. Water Environ Res 88:768–778CrossRefPubMed
go back to reference Gupta S, Tai N-H (2016) Carbon materials as oil sorbents: a review on the synthesis and performance. J Mater Chem A 4:1550–1565CrossRef Gupta S, Tai N-H (2016) Carbon materials as oil sorbents: a review on the synthesis and performance. J Mater Chem A 4:1550–1565CrossRef
go back to reference He Z, Zhang X, Batchelor W (2016) Cellulose nanofibre aerogel filter with tuneable pore structure for oil/water separation and recovery. RSC Adv 6:21435–21438CrossRef He Z, Zhang X, Batchelor W (2016) Cellulose nanofibre aerogel filter with tuneable pore structure for oil/water separation and recovery. RSC Adv 6:21435–21438CrossRef
go back to reference He J, Zhao H, Li X, Su D, Zhang F, Ji H, Liu R (2018) Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. J Hazard Mater 346:199–207CrossRefPubMed He J, Zhao H, Li X, Su D, Zhang F, Ji H, Liu R (2018) Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. J Hazard Mater 346:199–207CrossRefPubMed
go back to reference Hou P et al (2019) Hollow carbon spheres/graphene hybrid aerogels as high-performance absorbents for organic pollution. Sep Purif Technol 213:524–532CrossRef Hou P et al (2019) Hollow carbon spheres/graphene hybrid aerogels as high-performance absorbents for organic pollution. Sep Purif Technol 213:524–532CrossRef
go back to reference Hüsing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:22–45CrossRef Hüsing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:22–45CrossRef
go back to reference Jiang F, Hsieh YL (2017) Cellulose nanofibril aerogels: synergistic improvement of hydrophobicity, strength, and thermal stability via cross-linking with diisocyanate. ACS Appl Mater Interfaces 9:2825–2834CrossRefPubMed Jiang F, Hsieh YL (2017) Cellulose nanofibril aerogels: synergistic improvement of hydrophobicity, strength, and thermal stability via cross-linking with diisocyanate. ACS Appl Mater Interfaces 9:2825–2834CrossRefPubMed
go back to reference Jiang F, Hsieh Y-L (2018) Dual wet and dry resilient cellulose II fibrous aerogel for hydrocarbon–water separation and energy storage applications. ACS Omega 3:3530–3539CrossRefPubMedPubMedCentral Jiang F, Hsieh Y-L (2018) Dual wet and dry resilient cellulose II fibrous aerogel for hydrocarbon–water separation and energy storage applications. ACS Omega 3:3530–3539CrossRefPubMedPubMedCentral
go back to reference Jiang J, Zhang Q, Zhan X, Chen F (2019b) A multifunctional gelatin-based aerogel with superior pollutants adsorption, oil/water separation and photocatalytic properties. Chem Eng J 358:1539–1551CrossRef Jiang J, Zhang Q, Zhan X, Chen F (2019b) A multifunctional gelatin-based aerogel with superior pollutants adsorption, oil/water separation and photocatalytic properties. Chem Eng J 358:1539–1551CrossRef
go back to reference Jiao Y, Wan C, Li J (2016a) Synthesis of carbon fiber aerogel from natural bamboo fiber and its application as a green high-efficiency and recyclable absorbent. Mater Des 107:26–32CrossRef Jiao Y, Wan C, Li J (2016a) Synthesis of carbon fiber aerogel from natural bamboo fiber and its application as a green high-efficiency and recyclable absorbent. Mater Des 107:26–32CrossRef
go back to reference Jiao Y, Wan C, Qiang T, Li J (2016b) Synthesis of superhydrophobic ultralight aerogels from nanofibrillated cellulose isolated from natural reed for high-performance absorbents. Appl Phys A 122:686CrossRef Jiao Y, Wan C, Qiang T, Li J (2016b) Synthesis of superhydrophobic ultralight aerogels from nanofibrillated cellulose isolated from natural reed for high-performance absorbents. Appl Phys A 122:686CrossRef
go back to reference Jing Z, Ding J, Zhang T, Yang D, Qiu F, Chen Q, Xu J (2019) Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation. Food Bioprod Process 115:134–142CrossRef Jing Z, Ding J, Zhang T, Yang D, Qiu F, Chen Q, Xu J (2019) Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation. Food Bioprod Process 115:134–142CrossRef
go back to reference Kildeeva NR, Perminov PA, Vladimirov LV, Novikov VV, Mikhailov SN (2009) About mechanism of chitosan cross-linking with glutaraldehyde. Russ J Bioorgan Chem 35:360–369CrossRef Kildeeva NR, Perminov PA, Vladimirov LV, Novikov VV, Mikhailov SN (2009) About mechanism of chitosan cross-linking with glutaraldehyde. Russ J Bioorgan Chem 35:360–369CrossRef
go back to reference Kim CH, Youn HJ, Lee HL (2015) Preparation of cross-linked cellulose nanofibril aerogel with water absorbency and shape recovery. Cellulose 22:3715–3724CrossRef Kim CH, Youn HJ, Lee HL (2015) Preparation of cross-linked cellulose nanofibril aerogel with water absorbency and shape recovery. Cellulose 22:3715–3724CrossRef
go back to reference Kim CH, Youn HJ, Lee HL (2017) Preparation of surface-charged CNF aerogels and investigation of their ion adsorption properties. Cellulose 24:2895–2902CrossRef Kim CH, Youn HJ, Lee HL (2017) Preparation of surface-charged CNF aerogels and investigation of their ion adsorption properties. Cellulose 24:2895–2902CrossRef
go back to reference Kim U-J, Kim D, You J, Choi JW, Kimura S, Wada M (2018) Preparation of cellulose–chitosan foams using an aqueous lithium bromide solution and their adsorption ability for Congo red. Cellulose 25:2615–2628CrossRef Kim U-J, Kim D, You J, Choi JW, Kimura S, Wada M (2018) Preparation of cellulose–chitosan foams using an aqueous lithium bromide solution and their adsorption ability for Congo red. Cellulose 25:2615–2628CrossRef
go back to reference Kistler SS (1931) Coherent expanded and aerdgels and jellies. Nature 127:741CrossRef Kistler SS (1931) Coherent expanded and aerdgels and jellies. Nature 127:741CrossRef
go back to reference Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem 50:5438–5466CrossRef
go back to reference Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol–Gel Sci Technol 63:315–339CrossRef Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol–Gel Sci Technol 63:315–339CrossRef
go back to reference Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816CrossRefPubMed Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816CrossRefPubMed
go back to reference Laitinen O, Suopajarvi T, Osterberg M, Liimatainen H (2017) Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl Mater Interfaces 9:25029–25037CrossRefPubMed Laitinen O, Suopajarvi T, Osterberg M, Liimatainen H (2017) Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl Mater Interfaces 9:25029–25037CrossRefPubMed
go back to reference Lei E, Li W, Ma C, Liu S (2018) An ultra-lightweight recyclable carbon aerogel from bleached softwood kraft pulp for efficient oil and organic absorption. Mater Chem Phys 214:291–296CrossRef Lei E, Li W, Ma C, Liu S (2018) An ultra-lightweight recyclable carbon aerogel from bleached softwood kraft pulp for efficient oil and organic absorption. Mater Chem Phys 214:291–296CrossRef
go back to reference Li Y-Q, Samad YA, Polychronopoulou K, Alhassan SM, Liao K (2014) Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption. ACS Sustain Chem Eng 2:1492–1497CrossRef Li Y-Q, Samad YA, Polychronopoulou K, Alhassan SM, Liao K (2014) Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption. ACS Sustain Chem Eng 2:1492–1497CrossRef
go back to reference Li A, Lin R, Lin C, He B, Zheng T, Lu L, Cao Y (2016a) An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion. Carbohydr Polym 148:272–280CrossRefPubMed Li A, Lin R, Lin C, He B, Zheng T, Lu L, Cao Y (2016a) An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion. Carbohydr Polym 148:272–280CrossRefPubMed
go back to reference Li Y, Zhang H, Fan M, Zhuang J, Chen L (2016b) A robust salt-tolerant superoleophobic aerogel inspired by seaweed for efficient oil-water separation in marine environments. Phys Chem Chem Phys 18:25394–25400CrossRefPubMed Li Y, Zhang H, Fan M, Zhuang J, Chen L (2016b) A robust salt-tolerant superoleophobic aerogel inspired by seaweed for efficient oil-water separation in marine environments. Phys Chem Chem Phys 18:25394–25400CrossRefPubMed
go back to reference Li L, Hu T, Sun H, Zhang J, Wang A (2017) Pressure-sensitive and conductive carbon aerogels from poplars catkins for selective oil absorption and oil/water separation. ACS Appl Mater Interfaces 9:18001–18007CrossRefPubMed Li L, Hu T, Sun H, Zhang J, Wang A (2017) Pressure-sensitive and conductive carbon aerogels from poplars catkins for selective oil absorption and oil/water separation. ACS Appl Mater Interfaces 9:18001–18007CrossRefPubMed
go back to reference Li Y, Liu X, Cai W, Cao Y, Sun Y, Tan F (2018a) Preparation of corn straw based spongy aerogel for spillage oil capture. Korean J Chem Eng 35:1119–1127CrossRef Li Y, Liu X, Cai W, Cao Y, Sun Y, Tan F (2018a) Preparation of corn straw based spongy aerogel for spillage oil capture. Korean J Chem Eng 35:1119–1127CrossRef
go back to reference Li Z, Qiu J, Shi Y, Pei C (2018b) Wettability-switchable bacterial cellulose/polyhemiaminal nanofiber aerogels for continuous and effective oil/water separation. Cellulose 25:2987–2996CrossRef Li Z, Qiu J, Shi Y, Pei C (2018b) Wettability-switchable bacterial cellulose/polyhemiaminal nanofiber aerogels for continuous and effective oil/water separation. Cellulose 25:2987–2996CrossRef
go back to reference Li Z, Shao L, Hu W, Zheng T, Lu L, Cao Y, Chen Y (2018c) Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohydr Polym 191:183–190CrossRefPubMed Li Z, Shao L, Hu W, Zheng T, Lu L, Cao Y, Chen Y (2018c) Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohydr Polym 191:183–190CrossRefPubMed
go back to reference Li Z, Shao L, Ruan Z, Hu W, Lu L, Chen Y (2018d) Converting untreated waste office paper and chitosan into aerogel absorbent for the removal of heavy metal ions. Carbohydr Polym 193:221–227CrossRefPubMed Li Z, Shao L, Ruan Z, Hu W, Lu L, Chen Y (2018d) Converting untreated waste office paper and chitosan into aerogel absorbent for the removal of heavy metal ions. Carbohydr Polym 193:221–227CrossRefPubMed
go back to reference Li N, Yue Q, Gao B, Xu X, Su R, Yu B (2019a) One-step synthesis of peanut hull/graphene aerogel for highly efficient oil-water separation. J Clean Prod 207:764–771CrossRef Li N, Yue Q, Gao B, Xu X, Su R, Yu B (2019a) One-step synthesis of peanut hull/graphene aerogel for highly efficient oil-water separation. J Clean Prod 207:764–771CrossRef
go back to reference Li Y, Zhu L, Grishkewich N, Tam KC, Yuan J, Mao Z, Sui X (2019b) CO2-responsive cellulose nanofibers aerogels for switchable oil–water separation. ACS Appl Mater Interfaces 11:9367–9373CrossRefPubMed Li Y, Zhu L, Grishkewich N, Tam KC, Yuan J, Mao Z, Sui X (2019b) CO2-responsive cellulose nanofibers aerogels for switchable oil–water separation. ACS Appl Mater Interfaces 11:9367–9373CrossRefPubMed
go back to reference Li Y et al (2019c) Bio-inspired and assembled fungal hyphae/carbon nanotubes aerogel for water–oil separation. Nanotechnology 30:275601CrossRefPubMed Li Y et al (2019c) Bio-inspired and assembled fungal hyphae/carbon nanotubes aerogel for water–oil separation. Nanotechnology 30:275601CrossRefPubMed
go back to reference Liao Q, Su X, Zhu W, Hua W, Qian Z, Liu L, Yao J (2016) Flexible and durable cellulose aerogels for highly effective oil/water separation. RSC Adv 6:63773–63781CrossRef Liao Q, Su X, Zhu W, Hua W, Qian Z, Liu L, Yao J (2016) Flexible and durable cellulose aerogels for highly effective oil/water separation. RSC Adv 6:63773–63781CrossRef
go back to reference Lin R, Li A, Zheng T, Lu L, Cao Y (2015) Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Adv 5:82027–82033CrossRef Lin R, Li A, Zheng T, Lu L, Cao Y (2015) Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Adv 5:82027–82033CrossRef
go back to reference Liu H, Wang A, Xu X, Wang M, Shang S, Liu S, Song J (2016) Porous aerogels prepared by crosslinking of cellulose with 1,4-butanediol diglycidyl ether in NaOH/urea solution. RSC Adv 6:42854–42862CrossRef Liu H, Wang A, Xu X, Wang M, Shang S, Liu S, Song J (2016) Porous aerogels prepared by crosslinking of cellulose with 1,4-butanediol diglycidyl ether in NaOH/urea solution. RSC Adv 6:42854–42862CrossRef
go back to reference Liu B, Zhang L, Wang H, Bian Z (2017a) Preparation of MCC/MC silica sponge and its oil/water separation apparatus application. Ind Eng Chem Res 56:5795–5801CrossRef Liu B, Zhang L, Wang H, Bian Z (2017a) Preparation of MCC/MC silica sponge and its oil/water separation apparatus application. Ind Eng Chem Res 56:5795–5801CrossRef
go back to reference Liu S, Yao F, Oderinde O, Zhang Z, Fu G (2017b) Green synthesis of oriented xanthan gum-graphene oxide hybrid aerogels for water purification. Carbohydr Polym 174:392–399CrossRefPubMed Liu S, Yao F, Oderinde O, Zhang Z, Fu G (2017b) Green synthesis of oriented xanthan gum-graphene oxide hybrid aerogels for water purification. Carbohydr Polym 174:392–399CrossRefPubMed
go back to reference Liu Y, Peng Y, Zhang T, Qiu F, Yuan D (2018) Superhydrophobic, ultralight and flexible biomass carbon aerogels derived from sisal fibers for highly efficient oil–water separation. Cellulose 25:3067–3078CrossRef Liu Y, Peng Y, Zhang T, Qiu F, Yuan D (2018) Superhydrophobic, ultralight and flexible biomass carbon aerogels derived from sisal fibers for highly efficient oil–water separation. Cellulose 25:3067–3078CrossRef
go back to reference Lu Y, Yuan W (2017) Superhydrophobic/superoleophilic and reinforced ethyl cellulose sponges for oil/water separation: synergistic strategies of cross-linking, carbon nanotube composite, and nanosilica modification. ACS Appl Mater Interfaces 9:29167–29176CrossRefPubMed Lu Y, Yuan W (2017) Superhydrophobic/superoleophilic and reinforced ethyl cellulose sponges for oil/water separation: synergistic strategies of cross-linking, carbon nanotube composite, and nanosilica modification. ACS Appl Mater Interfaces 9:29167–29176CrossRefPubMed
go back to reference Lu Y, Yuan W (2018) Superhydrophobic three-dimensional porous ethyl cellulose absorbent with micro/nano-scale hierarchical structures for highly efficient removal of oily contaminants from water. Carbohydr Polym 191:86–94CrossRefPubMed Lu Y, Yuan W (2018) Superhydrophobic three-dimensional porous ethyl cellulose absorbent with micro/nano-scale hierarchical structures for highly efficient removal of oily contaminants from water. Carbohydr Polym 191:86–94CrossRefPubMed
go back to reference Lu Y et al (2016) Coherent-interface-assembled Ag2O-anchored nanofibrillated cellulose porous aerogels for radioactive iodine capture. ACS Appl Mater Interfaces 8:29179–29185CrossRefPubMed Lu Y et al (2016) Coherent-interface-assembled Ag2O-anchored nanofibrillated cellulose porous aerogels for radioactive iodine capture. ACS Appl Mater Interfaces 8:29179–29185CrossRefPubMed
go back to reference Lu Y, Wang Y, Liu L, Yuan W (2017) Environmental-friendly and magnetic/silanized ethyl cellulose sponges as effective and recyclable oil-absorption materials. Carbohydr Polym 173:422–430CrossRefPubMed Lu Y, Wang Y, Liu L, Yuan W (2017) Environmental-friendly and magnetic/silanized ethyl cellulose sponges as effective and recyclable oil-absorption materials. Carbohydr Polym 173:422–430CrossRefPubMed
go back to reference Lu Y, Niu Z, Yuan W (2019) Multifunctional magnetic superhydrophobic carbonaceous aerogel with micro/nano-scale hierarchical structures for environmental remediation and energy storage. Appl Surf Sci 480:851–860CrossRef Lu Y, Niu Z, Yuan W (2019) Multifunctional magnetic superhydrophobic carbonaceous aerogel with micro/nano-scale hierarchical structures for environmental remediation and energy storage. Appl Surf Sci 480:851–860CrossRef
go back to reference Luo H, Xie J, Wang J, Yao F, Yang Z, Wan Y (2018) Step-by-step self-assembly of 2D few-layer reduced graphene oxide into 3D architecture of bacterial cellulose for a robust, ultralight, and recyclable all-carbon absorbent. Carbon 139:824–832CrossRef Luo H, Xie J, Wang J, Yao F, Yang Z, Wan Y (2018) Step-by-step self-assembly of 2D few-layer reduced graphene oxide into 3D architecture of bacterial cellulose for a robust, ultralight, and recyclable all-carbon absorbent. Carbon 139:824–832CrossRef
go back to reference Ma H, Wang S, Meng F, Xu X, Huo X (2016) A hydrazone-carboxyl ligand-linked cellulose nanocrystal aerogel with high elasticity and fast oil/water separation. Cellulose 24:797–809CrossRef Ma H, Wang S, Meng F, Xu X, Huo X (2016) A hydrazone-carboxyl ligand-linked cellulose nanocrystal aerogel with high elasticity and fast oil/water separation. Cellulose 24:797–809CrossRef
go back to reference Ma Q, Yu Y, Sindoro M, Fane AG, Wang R, Zhang H (2017) Carbon-based functional materials derived from waste for water remediation and energy storage. Adv Mater 29:1605361CrossRef Ma Q, Yu Y, Sindoro M, Fane AG, Wang R, Zhang H (2017) Carbon-based functional materials derived from waste for water remediation and energy storage. Adv Mater 29:1605361CrossRef
go back to reference Ma S, Zhang M, Nie J, Tan J, Song S, Luo Y (2019) Lightweight and porous cellulose-based foams with high loadings of zeolitic imidazolate frameworks-8 for adsorption applications. Carbohydr Polym 208:328–335CrossRefPubMed Ma S, Zhang M, Nie J, Tan J, Song S, Luo Y (2019) Lightweight and porous cellulose-based foams with high loadings of zeolitic imidazolate frameworks-8 for adsorption applications. Carbohydr Polym 208:328–335CrossRefPubMed
go back to reference Maleki H (2016) Recent advances in aerogels for environmental remediation applications: a review. Chem Eng J 300:98–118CrossRef Maleki H (2016) Recent advances in aerogels for environmental remediation applications: a review. Chem Eng J 300:98–118CrossRef
go back to reference Maleki H, Whitmore L, Husing N (2018) Novel multifunctional polymethylsilsesquioxane-silk fibroin aerogel hybrids for environmental and thermal insulation applications. J Mater Chem A 6:12598–12612CrossRef Maleki H, Whitmore L, Husing N (2018) Novel multifunctional polymethylsilsesquioxane-silk fibroin aerogel hybrids for environmental and thermal insulation applications. J Mater Chem A 6:12598–12612CrossRef
go back to reference Meng Y, Young TM, Liu P, Contescu CI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22:435–447CrossRef Meng Y, Young TM, Liu P, Contescu CI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22:435–447CrossRef
go back to reference Meng G, Peng H, Wu J, Wang Y, Wang H, Liu Z, Guo X (2017) Fabrication of superhydrophobic cellulose/chitosan composite aerogel for oil/water separation. Fibers Polym 18:706–712CrossRef Meng G, Peng H, Wu J, Wang Y, Wang H, Liu Z, Guo X (2017) Fabrication of superhydrophobic cellulose/chitosan composite aerogel for oil/water separation. Fibers Polym 18:706–712CrossRef
go back to reference Mi H-Y, Jing X, Huang H-X, Peng X-F, Turng L-S (2018a) Superhydrophobic graphene/cellulose/silica aerogel with hierarchical structure as superabsorbers for high efficiency selective oil absorption and recovery. Ind Eng Chem Res 57:1745–1755CrossRef Mi H-Y, Jing X, Huang H-X, Peng X-F, Turng L-S (2018a) Superhydrophobic graphene/cellulose/silica aerogel with hierarchical structure as superabsorbers for high efficiency selective oil absorption and recovery. Ind Eng Chem Res 57:1745–1755CrossRef
go back to reference Mi H-Y, Jing X, Politowicz AL, Chen E, Huang H-X, Turng L-S (2018b) Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon 132:199–209CrossRef Mi H-Y, Jing X, Politowicz AL, Chen E, Huang H-X, Turng L-S (2018b) Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon 132:199–209CrossRef
go back to reference Mulyadi A, Zhang Z, Deng Y (2016) Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl Mater Interfaces 8:2732–2740CrossRefPubMed Mulyadi A, Zhang Z, Deng Y (2016) Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl Mater Interfaces 8:2732–2740CrossRefPubMed
go back to reference Nguyen ST, Feng J, Le NT, Le ATT, Hoang N, Tan VBC, Duong HM (2013) Cellulose aerogel from paper waste for crude oil spill cleaning. Ind Eng Chem Res 52:18386–18391CrossRef Nguyen ST, Feng J, Le NT, Le ATT, Hoang N, Tan VBC, Duong HM (2013) Cellulose aerogel from paper waste for crude oil spill cleaning. Ind Eng Chem Res 52:18386–18391CrossRef
go back to reference Nguyen ST, Feng J, Ng SK, Wong JPW, Tan VBC, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf A 445:128–134CrossRef Nguyen ST, Feng J, Ng SK, Wong JPW, Tan VBC, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf A 445:128–134CrossRef
go back to reference Peng H et al (2016a) Preparation of superhydrophobic magnetic cellulose sponge for removing oil from water. Ind Eng Chem Res 55:832–838CrossRef Peng H et al (2016a) Preparation of superhydrophobic magnetic cellulose sponge for removing oil from water. Ind Eng Chem Res 55:832–838CrossRef
go back to reference Peng H, Wu J, Wang Y, Wang H, Liu Z, Shi Y, Guo X (2016b) A facile approach for preparation of underwater superoleophobicity cellulose/chitosan composite aerogel for oil/water separation. Appl Phys A 122:516CrossRef Peng H, Wu J, Wang Y, Wang H, Liu Z, Shi Y, Guo X (2016b) A facile approach for preparation of underwater superoleophobicity cellulose/chitosan composite aerogel for oil/water separation. Appl Phys A 122:516CrossRef
go back to reference Phanthong P et al (2018) Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydr Polym 190:184–189CrossRefPubMed Phanthong P et al (2018) Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydr Polym 190:184–189CrossRefPubMed
go back to reference Priyanka M, Saravanakumar MP (2018) Ultrahigh adsorption capacity of starch derived zinc based carbon foam for adsorption of toxic dyes and its preliminary investigation on oil-water separation. J Clean Prod 197:511–524CrossRef Priyanka M, Saravanakumar MP (2018) Ultrahigh adsorption capacity of starch derived zinc based carbon foam for adsorption of toxic dyes and its preliminary investigation on oil-water separation. J Clean Prod 197:511–524CrossRef
go back to reference Rafieian F, Hosseini M, Jonoobi M, Yu Q (2018) Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose 25:4695–4710CrossRef Rafieian F, Hosseini M, Jonoobi M, Yu Q (2018) Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose 25:4695–4710CrossRef
go back to reference Rechberger F, Niederberger M (2017) Synthesis of aerogels: from molecular routes to 3-dimensional nanoparticle assembly. Nanoscale Horiz 2:6–30CrossRef Rechberger F, Niederberger M (2017) Synthesis of aerogels: from molecular routes to 3-dimensional nanoparticle assembly. Nanoscale Horiz 2:6–30CrossRef
go back to reference Ren W, Gao J, Lei C, Xie Y, Cai Y, Ni Q, Yao J (2018) Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants. Chem Eng J 349:766–774CrossRef Ren W, Gao J, Lei C, Xie Y, Cai Y, Ni Q, Yao J (2018) Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants. Chem Eng J 349:766–774CrossRef
go back to reference Sai H et al (2013) Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process. J Mater Chem A 1:7963CrossRef Sai H et al (2013) Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process. J Mater Chem A 1:7963CrossRef
go back to reference Sai H et al (2014) Flexible aerogels with interpenetrating network structure of bacterial cellulose–silica composite from sodium silicate precursor via freeze drying process. RSC Adv 4:30453CrossRef Sai H et al (2014) Flexible aerogels with interpenetrating network structure of bacterial cellulose–silica composite from sodium silicate precursor via freeze drying process. RSC Adv 4:30453CrossRef
go back to reference Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381CrossRefPubMed Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381CrossRefPubMed
go back to reference Saleem J, Adil Riaz M (2018) Oil sorbents from plastic wastes and polymers: a review. J Hazard Mater 341:424–437CrossRefPubMed Saleem J, Adil Riaz M (2018) Oil sorbents from plastic wastes and polymers: a review. J Hazard Mater 341:424–437CrossRefPubMed
go back to reference Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
go back to reference Sirviö JA, Visanko M, Liimatainen H (2016) Synthesis of imidazolium-crosslinked chitosan aerogel and its prospect as a dye removing absorbent. RSC Adv 6:56544–56548CrossRef Sirviö JA, Visanko M, Liimatainen H (2016) Synthesis of imidazolium-crosslinked chitosan aerogel and its prospect as a dye removing absorbent. RSC Adv 6:56544–56548CrossRef
go back to reference Song S, Zhang Y (2017) Construction of a 3D multiple network skeleton by the thiol-Michael addition click reaction to fabricate novel polymer/graphene aerogels with exceptional thermal conductivity and mechanical properties. J Mater Chem A 5:22352–22360CrossRef Song S, Zhang Y (2017) Construction of a 3D multiple network skeleton by the thiol-Michael addition click reaction to fabricate novel polymer/graphene aerogels with exceptional thermal conductivity and mechanical properties. J Mater Chem A 5:22352–22360CrossRef
go back to reference Su C, Yang H, Zhao H, Liu Y, Chen R (2017) Recyclable and biodegradable superhydrophobic and superoleophilic chitosan sponge for the effective removal of oily pollutants from water. Chem Eng J 330:423–432CrossRef Su C, Yang H, Zhao H, Liu Y, Chen R (2017) Recyclable and biodegradable superhydrophobic and superoleophilic chitosan sponge for the effective removal of oily pollutants from water. Chem Eng J 330:423–432CrossRef
go back to reference Sun F, Liu W, Dong Z, Deng Y (2017) Underwater superoleophobicity cellulose nanofibril aerogel through regioselective sulfonation for oil/water separation. Chem Eng J 330:774–782CrossRef Sun F, Liu W, Dong Z, Deng Y (2017) Underwater superoleophobicity cellulose nanofibril aerogel through regioselective sulfonation for oil/water separation. Chem Eng J 330:774–782CrossRef
go back to reference Tan S, Xie Q, Lu X, Zhao N, Zhang X, Xu J (2008) One step preparation of superhydrophobic polymeric surface with polystyrene under ambient atmosphere. J Colloid Interface Sci 322:1–5CrossRefPubMed Tan S, Xie Q, Lu X, Zhao N, Zhang X, Xu J (2008) One step preparation of superhydrophobic polymeric surface with polystyrene under ambient atmosphere. J Colloid Interface Sci 322:1–5CrossRefPubMed
go back to reference Vadodariya N, Meena R (2019) Protein-functionalized aerogel membranes for gravity-driven separation. ACS Sustain Chem Eng 7:4814–4820CrossRef Vadodariya N, Meena R (2019) Protein-functionalized aerogel membranes for gravity-driven separation. ACS Sustain Chem Eng 7:4814–4820CrossRef
go back to reference Wan W, Lin Y, Prakash A, Zhou Y (2016) Three-dimensional carbon-based architectures for oil remediation from synthesis and modification to functionalization. J Mater Chem A 4:18687–18705CrossRef Wan W, Lin Y, Prakash A, Zhou Y (2016) Three-dimensional carbon-based architectures for oil remediation from synthesis and modification to functionalization. J Mater Chem A 4:18687–18705CrossRef
go back to reference Wang J, Liu S (2019) Remodeling of raw cotton fiber into flexible, squeezing-resistant macroporous cellulose aerogel with high oil retention capability for oil/water separation. Sep Purif Technol 221:303–310CrossRef Wang J, Liu S (2019) Remodeling of raw cotton fiber into flexible, squeezing-resistant macroporous cellulose aerogel with high oil retention capability for oil/water separation. Sep Purif Technol 221:303–310CrossRef
go back to reference Wang Y et al (2014) Ultra-light nanocomposite aerogels of bacterial cellulose and reduced graphene oxide for specific absorption and separation of organic liquids. RSC Adv 4:21553CrossRef Wang Y et al (2014) Ultra-light nanocomposite aerogels of bacterial cellulose and reduced graphene oxide for specific absorption and separation of organic liquids. RSC Adv 4:21553CrossRef
go back to reference Wang Y, Xia G, Wu C, Sun J, Song R, Huang W (2015) Porous chitosan doped with graphene oxide as highly effective absorbent for methyl orange and amido black 10B. Carbohydr Polym 115:686–693CrossRefPubMed Wang Y, Xia G, Wu C, Sun J, Song R, Huang W (2015) Porous chitosan doped with graphene oxide as highly effective absorbent for methyl orange and amido black 10B. Carbohydr Polym 115:686–693CrossRefPubMed
go back to reference Wang J et al (2016a) Ultrasoft gelatin aerogels for oil contaminant removal. J Mater Chem A 4:9381–9389CrossRef Wang J et al (2016a) Ultrasoft gelatin aerogels for oil contaminant removal. J Mater Chem A 4:9381–9389CrossRef
go back to reference Wang Z, Jin P, Wang M, Wu G, Dong C, Wu A (2016b) Biomass-derived porous carbonaceous aerogel as sorbent for oil-spill remediation. ACS Appl Mater Interfaces 8:32862–32868CrossRefPubMed Wang Z, Jin P, Wang M, Wu G, Dong C, Wu A (2016b) Biomass-derived porous carbonaceous aerogel as sorbent for oil-spill remediation. ACS Appl Mater Interfaces 8:32862–32868CrossRefPubMed
go back to reference Wang Y et al (2017b) Multifunctional bionanocomposite foams with a chitosan matrix reinforced by nanofibrillated cellulose. ChemNanoMat 3:98–108CrossRef Wang Y et al (2017b) Multifunctional bionanocomposite foams with a chitosan matrix reinforced by nanofibrillated cellulose. ChemNanoMat 3:98–108CrossRef
go back to reference Wang Y, Zhu L, Zhu F, You L, Shen X, Li S (2017c) Removal of organic solvents/oils using carbon aerogels derived from waste durian shell. J Taiwan Inst Chem Eng 78:351–358CrossRef Wang Y, Zhu L, Zhu F, You L, Shen X, Li S (2017c) Removal of organic solvents/oils using carbon aerogels derived from waste durian shell. J Taiwan Inst Chem Eng 78:351–358CrossRef
go back to reference Wang D, Yu H, Fan X, Gu J, Ye S, Yao J, Ni Q (2018a) High aspect ratio carboxylated cellulose nanofibers cross-linked to robust aerogels for superabsorption–flocculants: paving way from nanoscale to macroscale. ACS Appl Mater Interfaces 10:20755–20766CrossRefPubMed Wang D, Yu H, Fan X, Gu J, Ye S, Yao J, Ni Q (2018a) High aspect ratio carboxylated cellulose nanofibers cross-linked to robust aerogels for superabsorption–flocculants: paving way from nanoscale to macroscale. ACS Appl Mater Interfaces 10:20755–20766CrossRefPubMed
go back to reference Wang H, Chen Y, Dang B, Shen X, Jin C, Sun Q, Pei J (2018b) Ultrafine Mn ferrite by anchoring in a cellulose framework for efficient toxic ions capture and fast water/oil separation. Carbohydr Polym 195:117–125CrossRef Wang H, Chen Y, Dang B, Shen X, Jin C, Sun Q, Pei J (2018b) Ultrafine Mn ferrite by anchoring in a cellulose framework for efficient toxic ions capture and fast water/oil separation. Carbohydr Polym 195:117–125CrossRef
go back to reference Wang K, Liu X, Tan Y, Zhang W, Zhang S, Li J (2019a) Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chem Eng J 371:769–780CrossRef Wang K, Liu X, Tan Y, Zhang W, Zhang S, Li J (2019a) Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chem Eng J 371:769–780CrossRef
go back to reference Wang Y, Feng Y, Yao J (2019b) Construction of hydrophobic alginate-based foams induced by zirconium ions for oil and organic solvent cleanup. J Colloid Interface Sci 533:182–189CrossRefPubMed Wang Y, Feng Y, Yao J (2019b) Construction of hydrophobic alginate-based foams induced by zirconium ions for oil and organic solvent cleanup. J Colloid Interface Sci 533:182–189CrossRefPubMed
go back to reference Wang Z, Song L, Wang Y, Zhang X-F, Hao D, Feng Y (2019c) Lightweight UiO-66/cellulose aerogels constructed through self-crosslinking strategy for adsorption applications. Chem Eng J 371:138–144CrossRef Wang Z, Song L, Wang Y, Zhang X-F, Hao D, Feng Y (2019c) Lightweight UiO-66/cellulose aerogels constructed through self-crosslinking strategy for adsorption applications. Chem Eng J 371:138–144CrossRef
go back to reference Wei X, Huang T, Yang JH, Zhang N, Wang Y, Zhou ZW (2017) Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents. J Hazard Mater 335:28–38CrossRefPubMed Wei X, Huang T, Yang JH, Zhang N, Wang Y, Zhou ZW (2017) Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents. J Hazard Mater 335:28–38CrossRefPubMed
go back to reference Wu Z et al (2017) Thiol–ene click reaction on cellulose sponge and its application for oil/water separation. RSC Adv 7:20147–20151CrossRef Wu Z et al (2017) Thiol–ene click reaction on cellulose sponge and its application for oil/water separation. RSC Adv 7:20147–20151CrossRef
go back to reference Xiao S, Gao R, Lu Y, Li J, Sun Q (2015) Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydr Polym 119:202–209CrossRefPubMed Xiao S, Gao R, Lu Y, Li J, Sun Q (2015) Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydr Polym 119:202–209CrossRefPubMed
go back to reference Xiao J, Lv W, Song Y, Zheng Q (2018) Graphene/nanofiber aerogels: performance regulation towards multiple applications in dye adsorption and oil/water separation. Chem Eng J 338:202–210CrossRef Xiao J, Lv W, Song Y, Zheng Q (2018) Graphene/nanofiber aerogels: performance regulation towards multiple applications in dye adsorption and oil/water separation. Chem Eng J 338:202–210CrossRef
go back to reference Xie S, Huang S, Wei W, Yang X, Liu Y, Lu X, Tong Y (2016) Chitosan waste-derived Co and N Co-doped carbon electrocatalyst for efficient oxygen reduction reaction. ChemElectroChem 2:1806–1812CrossRef Xie S, Huang S, Wei W, Yang X, Liu Y, Lu X, Tong Y (2016) Chitosan waste-derived Co and N Co-doped carbon electrocatalyst for efficient oxygen reduction reaction. ChemElectroChem 2:1806–1812CrossRef
go back to reference Xu Z, Jiang X, Zhou H, Li J (2017a) Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)–cellulose nanofiber (CNF) aerogels as effective oil absorbents. Cellulose 25:1217–1227CrossRef Xu Z, Jiang X, Zhou H, Li J (2017a) Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)–cellulose nanofiber (CNF) aerogels as effective oil absorbents. Cellulose 25:1217–1227CrossRef
go back to reference Xu Z, Zhou H, Jiang X, Li J, Huang F (2017b) Facile synthesis of reduced graphene oxide/trimethyl chlorosilane-coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnol 11:929–934CrossRefPubMed Xu Z, Zhou H, Jiang X, Li J, Huang F (2017b) Facile synthesis of reduced graphene oxide/trimethyl chlorosilane-coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnol 11:929–934CrossRefPubMed
go back to reference Xu T, Wang Z, Ding Y, Xu W, Wu W, Zhu Z, Fong H (2018a) Ultralight electrospun cellulose sponge with super-high capacity on absorption of organic compounds. Carbohydr Polym 179:164–172CrossRefPubMed Xu T, Wang Z, Ding Y, Xu W, Wu W, Zhu Z, Fong H (2018a) Ultralight electrospun cellulose sponge with super-high capacity on absorption of organic compounds. Carbohydr Polym 179:164–172CrossRefPubMed
go back to reference Xu Z, Zhou H, Tan S, Jiang X, Wu W, Shi J, Chen P (2018b) Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil-water separation. Beilstein J Nanotechnol 9:508–519CrossRefPubMedPubMedCentral Xu Z, Zhou H, Tan S, Jiang X, Wu W, Shi J, Chen P (2018b) Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil-water separation. Beilstein J Nanotechnol 9:508–519CrossRefPubMedPubMedCentral
go back to reference Xu X et al (2019) Preparation and characterization of cellulose grafted with epoxidized soybean oil aerogels for oil-absorbing materials. J Agric Food Chem 67:637–643CrossRefPubMed Xu X et al (2019) Preparation and characterization of cellulose grafted with epoxidized soybean oil aerogels for oil-absorbing materials. J Agric Food Chem 67:637–643CrossRefPubMed
go back to reference Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025CrossRef Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025CrossRef
go back to reference Yang S, Chen L, Mu L, Hao B, Ma P-C (2015) Low cost carbon fiber aerogel derived from bamboo for the adsorption of oils and organic solvents with excellent performances. RSC Adv 5:38470–38478CrossRef Yang S, Chen L, Mu L, Hao B, Ma P-C (2015) Low cost carbon fiber aerogel derived from bamboo for the adsorption of oils and organic solvents with excellent performances. RSC Adv 5:38470–38478CrossRef
go back to reference Yang H, Sheikhi A, van de Ven TG (2016) Reusable green aerogels from cross-linked hairy nanocrystalline cellulose and modified chitosan for dye removal. Langmuir 32:11771–11779CrossRef Yang H, Sheikhi A, van de Ven TG (2016) Reusable green aerogels from cross-linked hairy nanocrystalline cellulose and modified chitosan for dye removal. Langmuir 32:11771–11779CrossRef
go back to reference Yang J, Xia Y, Xu P, Chen B (2018a) Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation. Cellulose 25:3533–3544CrossRef Yang J, Xia Y, Xu P, Chen B (2018a) Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation. Cellulose 25:3533–3544CrossRef
go back to reference Yang J, Xu P, Xia Y, Chen B (2018b) Multifunctional carbon aerogels from typha orientalis for oil/water separation and simultaneous removal of oil-soluble pollutants. Cellulose 25:5863–5875CrossRef Yang J, Xu P, Xia Y, Chen B (2018b) Multifunctional carbon aerogels from typha orientalis for oil/water separation and simultaneous removal of oil-soluble pollutants. Cellulose 25:5863–5875CrossRef
go back to reference Yang W et al (2018c) Fabrication of fully bio-based aerogels via microcrystalline cellulose and hydroxyapatite nanorods with highly effective flame-retardant properties. ACS Appl Nano Mater 1:1921–1931CrossRef Yang W et al (2018c) Fabrication of fully bio-based aerogels via microcrystalline cellulose and hydroxyapatite nanorods with highly effective flame-retardant properties. ACS Appl Nano Mater 1:1921–1931CrossRef
go back to reference Yang W et al (2018d) Novel 3D network architectured hybrid aerogel comprising epoxy, graphene, and hydroxylated boron nitride nanosheets. ACS Appl Mater Interfaces 10:40032–40043CrossRefPubMed Yang W et al (2018d) Novel 3D network architectured hybrid aerogel comprising epoxy, graphene, and hydroxylated boron nitride nanosheets. ACS Appl Mater Interfaces 10:40032–40043CrossRefPubMed
go back to reference Yang X, Ma J, Ling J, Li N, Wang D, Yue F, Xu S (2018e) Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation. Appl Surf Sci 435:609–616CrossRef Yang X, Ma J, Ling J, Li N, Wang D, Yue F, Xu S (2018e) Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation. Appl Surf Sci 435:609–616CrossRef
go back to reference Yang X, Xie Y, Wang Y, Qi W, Huang R, Su R, He Z (2018f) Self-assembled microporous peptide-polysaccharide aerogels for oil–water separation. Langmuir 34:10732–10738CrossRefPubMed Yang X, Xie Y, Wang Y, Qi W, Huang R, Su R, He Z (2018f) Self-assembled microporous peptide-polysaccharide aerogels for oil–water separation. Langmuir 34:10732–10738CrossRefPubMed
go back to reference Yang W et al (2019) Pectin-assisted dispersion of exfoliated boron nitride nanosheets for assembled bio-composite aerogels. Compos Part A Appl Sci Manuf 119:196–205CrossRef Yang W et al (2019) Pectin-assisted dispersion of exfoliated boron nitride nanosheets for assembled bio-composite aerogels. Compos Part A Appl Sci Manuf 119:196–205CrossRef
go back to reference Yin A, Xu F, Zhang X (2016) Fabrication of biomass-derived carbon aerogels with high adsorption of oils and organic solvents: effect of hydrothermal and post-pyrolysis processes. Materials 9:758CrossRefPubMedCentral Yin A, Xu F, Zhang X (2016) Fabrication of biomass-derived carbon aerogels with high adsorption of oils and organic solvents: effect of hydrothermal and post-pyrolysis processes. Materials 9:758CrossRefPubMedCentral
go back to reference Yu M, Han Y, Li J, Wang L (2018) Magnetic carbon aerogel pyrolysis from sodium carboxymethyl cellulose/sodium montmorillonite composite aerogel for removal of organic contamination. J Porous Mater 25:657–664CrossRef Yu M, Han Y, Li J, Wang L (2018) Magnetic carbon aerogel pyrolysis from sodium carboxymethyl cellulose/sodium montmorillonite composite aerogel for removal of organic contamination. J Porous Mater 25:657–664CrossRef
go back to reference Yu L, Zhang Z, Tang H, Zhou J (2019) Fabrication of hydrophobic cellulosic materials via gas–solid silylation reaction for oil/water separation. Cellulose 26:4021–4037CrossRef Yu L, Zhang Z, Tang H, Zhou J (2019) Fabrication of hydrophobic cellulosic materials via gas–solid silylation reaction for oil/water separation. Cellulose 26:4021–4037CrossRef
go back to reference Yuan W et al (2017) Ultra-lightweight and highly porous carbon aerogels from bamboo pulp fibers as an effective sorbent for water treatment. Results Phys 7:2919–2924CrossRef Yuan W et al (2017) Ultra-lightweight and highly porous carbon aerogels from bamboo pulp fibers as an effective sorbent for water treatment. Results Phys 7:2919–2924CrossRef
go back to reference Yuan D, Zhang T, Guo Q, Qiu F, Yang D, Ou Z (2018a) Recyclable biomass carbon@SiO2@MnO2 aerogel with hierarchical structures for fast and selective oil-water separation. Chem Eng J 351:622–630CrossRef Yuan D, Zhang T, Guo Q, Qiu F, Yang D, Ou Z (2018a) Recyclable biomass carbon@SiO2@MnO2 aerogel with hierarchical structures for fast and selective oil-water separation. Chem Eng J 351:622–630CrossRef
go back to reference Yuan D, Zhang T, Guo Q, Qiu F, Yang D, Ou Z (2018b) Superhydrophobic hierarchical biomass carbon aerogel assembled with TiO2 nanorods for selective immiscible oil/water mixture and emulsion separation. Ind Eng Chem Res 57:14758–14766CrossRef Yuan D, Zhang T, Guo Q, Qiu F, Yang D, Ou Z (2018b) Superhydrophobic hierarchical biomass carbon aerogel assembled with TiO2 nanorods for selective immiscible oil/water mixture and emulsion separation. Ind Eng Chem Res 57:14758–14766CrossRef
go back to reference Yue X, Zhang T, Yang D, Qiu F, Li Z (2018) Hybrid aerogels derived from banana peel and waste paper for efficient oil absorption and emulsion separation. J Clean Prod 199:411–419CrossRef Yue X, Zhang T, Yang D, Qiu F, Li Z (2018) Hybrid aerogels derived from banana peel and waste paper for efficient oil absorption and emulsion separation. J Clean Prod 199:411–419CrossRef
go back to reference Yun L, Zhao J, Kang X, Du Y, Yuan X, Hou X (2017) Preparation and properties of monolithic and hydrophobic gelatin–silica composite aerogels for oil absorption. J Sol–Gel Sci Technol 83:197–206CrossRef Yun L, Zhao J, Kang X, Du Y, Yuan X, Hou X (2017) Preparation and properties of monolithic and hydrophobic gelatin–silica composite aerogels for oil absorption. J Sol–Gel Sci Technol 83:197–206CrossRef
go back to reference Zahed MA, Aziz HA, Isa MH, Mohajeri L, Mohajeri S (2010) Optimal conditions for bioremediation of oily seawater. Bioresour Technol 101:9455–9460CrossRefPubMed Zahed MA, Aziz HA, Isa MH, Mohajeri L, Mohajeri S (2010) Optimal conditions for bioremediation of oily seawater. Bioresour Technol 101:9455–9460CrossRefPubMed
go back to reference Zanata DDM, Battirola LC, Goncalves MDC (2018) Chemically cross-linked aerogels based on cellulose nanocrystals and polysilsesquioxane. Cellulose 25:7225–7238CrossRef Zanata DDM, Battirola LC, Goncalves MDC (2018) Chemically cross-linked aerogels based on cellulose nanocrystals and polysilsesquioxane. Cellulose 25:7225–7238CrossRef
go back to reference Zanini M, Lavoratti A, Lazzari LK, Galiotto D, Pagnocelli M, Baldasso C, Zattera AJ (2017) Producing aerogels from silanized cellulose nanofiber suspension. Cellulose 24:769–779CrossRef Zanini M, Lavoratti A, Lazzari LK, Galiotto D, Pagnocelli M, Baldasso C, Zattera AJ (2017) Producing aerogels from silanized cellulose nanofiber suspension. Cellulose 24:769–779CrossRef
go back to reference Zhai T, Zheng Q, Cai Z, Xia H, Gong S (2016) Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents. Carbohydr Polym 148:300–308CrossRefPubMed Zhai T, Zheng Q, Cai Z, Xia H, Gong S (2016) Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents. Carbohydr Polym 148:300–308CrossRefPubMed
go back to reference Zhang X, Li Z, Liu K, Jiang L (2013) Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv Funct Mater 23:2881–2886CrossRef Zhang X, Li Z, Liu K, Jiang L (2013) Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv Funct Mater 23:2881–2886CrossRef
go back to reference Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRef Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRef
go back to reference Zhang F, Ren H, Tong G, Deng Y (2016a) Ultra-lightweight poly (sodium acrylate) modified TEMPO-oxidized cellulose nanofibril aerogel spheres and their superabsorbent properties. Cellulose 23:3665–3676CrossRef Zhang F, Ren H, Tong G, Deng Y (2016a) Ultra-lightweight poly (sodium acrylate) modified TEMPO-oxidized cellulose nanofibril aerogel spheres and their superabsorbent properties. Cellulose 23:3665–3676CrossRef
go back to reference Zhang H, Li Y, Xu Y, Lu Z, Chen L, Huang L, Fan M (2016b) Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up. Phys Chem Chem Phys 18:28297–28306CrossRefPubMed Zhang H, Li Y, Xu Y, Lu Z, Chen L, Huang L, Fan M (2016b) Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up. Phys Chem Chem Phys 18:28297–28306CrossRefPubMed
go back to reference Zhang H, Li Y, Lu Z, Chen L, Huang L, Fan M (2017a) A robust superhydrophobic TiO2 NPs coated cellulose sponge for highly efficient oil-water separation. Sci Rep 7:9428CrossRefPubMedPubMedCentral Zhang H, Li Y, Lu Z, Chen L, Huang L, Fan M (2017a) A robust superhydrophobic TiO2 NPs coated cellulose sponge for highly efficient oil-water separation. Sci Rep 7:9428CrossRefPubMedPubMedCentral
go back to reference Zhang S, Feng J, Feng J, Jiang Y (2017b) Formation of enhanced gelatum using ethanol/water binary medium for fabricating chitosan aerogels with high specific surface area. Chem Eng J 309:700–707CrossRef Zhang S, Feng J, Feng J, Jiang Y (2017b) Formation of enhanced gelatum using ethanol/water binary medium for fabricating chitosan aerogels with high specific surface area. Chem Eng J 309:700–707CrossRef
go back to reference Zhang Y, Wang F, Zhang D, Chen J, Zhu H, Zhou L, Chen Z (2017c) New type multifunction porous aerogels for supercapacitors and absorbents based on cellulose nanofibers and graphene. Mater Lett 208:73–76CrossRef Zhang Y, Wang F, Zhang D, Chen J, Zhu H, Zhou L, Chen Z (2017c) New type multifunction porous aerogels for supercapacitors and absorbents based on cellulose nanofibers and graphene. Mater Lett 208:73–76CrossRef
go back to reference Zhang H, Li Y, Shi R, Chen L, Fan M (2018a) A robust salt-tolerant superoleophobic chitosannanofibrillated cellulose aerogel for highly efficient oilwater separation. Carbohydr Polym 200:611–615CrossRefPubMed Zhang H, Li Y, Shi R, Chen L, Fan M (2018a) A robust salt-tolerant superoleophobic chitosannanofibrillated cellulose aerogel for highly efficient oilwater separation. Carbohydr Polym 200:611–615CrossRefPubMed
go back to reference Zhang YG, Zhu YJ, Xiong ZC, Wu J, Chen F (2018b) Bioinspired ultralight inorganic aerogel for highly efficient air filtration and oil-water separation. ACS Appl Mater Interfaces 10:13019–13027CrossRefPubMed Zhang YG, Zhu YJ, Xiong ZC, Wu J, Chen F (2018b) Bioinspired ultralight inorganic aerogel for highly efficient air filtration and oil-water separation. ACS Appl Mater Interfaces 10:13019–13027CrossRefPubMed
go back to reference Zhang H et al (2019a) Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption. J Colloid Interface Sci 536:245–251CrossRefPubMed Zhang H et al (2019a) Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption. J Colloid Interface Sci 536:245–251CrossRefPubMed
go back to reference Zhang T, Yuan D, Guo Q, Qiu F, Yang D, Ou Z (2019b) Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: inspired by green leaves to green Tofu. Food Bioprod Process 114:154–162CrossRef Zhang T, Yuan D, Guo Q, Qiu F, Yang D, Ou Z (2019b) Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: inspired by green leaves to green Tofu. Food Bioprod Process 114:154–162CrossRef
go back to reference Zhang X, Wang H, Cai Z, Yan N, Liu M, Yu Y (2019c) Highly compressible and hydrophobic anisotropic aerogels for selective oil/organic solvent absorption. ACS Sustain Chem Eng 7:332–340CrossRef Zhang X, Wang H, Cai Z, Yan N, Liu M, Yu Y (2019c) Highly compressible and hydrophobic anisotropic aerogels for selective oil/organic solvent absorption. ACS Sustain Chem Eng 7:332–340CrossRef
go back to reference Zhang Y, Yin M, Lin X, Ren X, Huang T-S, Kim IS (2019d) Functional nanocomposite aerogels based on nanocrystalline cellulose for selective oil/water separation and antibacterial applications. Chem Eng J 371:306–313CrossRef Zhang Y, Yin M, Lin X, Ren X, Huang T-S, Kim IS (2019d) Functional nanocomposite aerogels based on nanocrystalline cellulose for selective oil/water separation and antibacterial applications. Chem Eng J 371:306–313CrossRef
go back to reference Zhao L, Li L, Wang Y, Wu J, Meng G, Liu Z, Guo X (2017) Preparation and characterization of thermo- and pH dual-responsive 3D cellulose-based aerogel for oil/water separation. Appl Phys A 124:9CrossRef Zhao L, Li L, Wang Y, Wu J, Meng G, Liu Z, Guo X (2017) Preparation and characterization of thermo- and pH dual-responsive 3D cellulose-based aerogel for oil/water separation. Appl Phys A 124:9CrossRef
go back to reference Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nystrom G (2018) Biopolymer aerogels and foams: chemistry, properties, and applications. Angew Chem Int Ed 57:7580–7608CrossRef Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nystrom G (2018) Biopolymer aerogels and foams: chemistry, properties, and applications. Angew Chem Int Ed 57:7580–7608CrossRef
go back to reference Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118CrossRef Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118CrossRef
go back to reference Zhou S, Liu P, Wang M, Zhao H, Yang J, Xu F (2016) Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustain Chem Eng 4:6409–6416CrossRef Zhou S, Liu P, Wang M, Zhao H, Yang J, Xu F (2016) Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustain Chem Eng 4:6409–6416CrossRef
go back to reference Zhou S, You T, Zhang X, Xu F (2018) Superhydrophobic cellulose nanofiber-assembled aerogels for highly efficient water-in-oil emulsions separation. ACS Appl Nano Mater 1:2095–2103CrossRef Zhou S, You T, Zhang X, Xu F (2018) Superhydrophobic cellulose nanofiber-assembled aerogels for highly efficient water-in-oil emulsions separation. ACS Appl Nano Mater 1:2095–2103CrossRef
go back to reference Zhou L, Zhai S, Chen Y, Xu Z (2019) Anisotropic cellulose nanofiberspolyvinyl alcoholgraphene aerogels fabricated by directional freeze-drying as effective oil absorbents. Polymers 11:712CrossRefPubMedCentral Zhou L, Zhai S, Chen Y, Xu Z (2019) Anisotropic cellulose nanofiberspolyvinyl alcoholgraphene aerogels fabricated by directional freeze-drying as effective oil absorbents. Polymers 11:712CrossRefPubMedCentral
go back to reference Zhu L, Wang Y, Wang Y, You L, Shen X, Li S (2017) An environmentally friendly carbon aerogels derived from waste pomelo peels for the removal of organic pollutants/oils. Microporous Mesoporous Mater 241:285–292CrossRef Zhu L, Wang Y, Wang Y, You L, Shen X, Li S (2017) An environmentally friendly carbon aerogels derived from waste pomelo peels for the removal of organic pollutants/oils. Microporous Mesoporous Mater 241:285–292CrossRef
Metadata
Title
Recent progress in bio-based aerogel absorbents for oil/water separation
Authors
Wen-Jie Yang
Anthony Chun Yin Yuen
Ao Li
Bo Lin
Timothy Bo Yuan Chen
Wei Yang
Hong-Dian Lu
Guan Heng Yeoh
Publication date
10-06-2019
Publisher
Springer Netherlands
Published in
Cellulose / Issue 11/2019
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02559-x

Other articles of this Issue 11/2019

Cellulose 11/2019 Go to the issue